Reactive oxygen species (ROS) play an important role in various physiological processes of living organisms. However, their increased concentration is usually considered as a threat for our health. Plants, invertebrates, and vertebrates including humans have various enzymatic and non-enzymatic defence systems against ROS. Unfortunately, both bad condition of surrounding environment and unhealthy lifestyle can interfere with an activity of enzymes responsible for a regulation of ROS levels. Therefore, it is important to look for alternative ROS scavengers, which could be administrated to chosen tissues to prevent pathological processes such as distortion of DNA or RNA structures and oxidation of proteins and lipids. One of the most recently proposed solutions is the application of nanozymes, which could mimic the activity of essential enzymes and prevent excessive activity of ROS. In this work, nanoparticles of Au, Pt, Pd, Ru and Rh were synthesized and studied in this regard. Peroxidase-, catalase (CAT)- and superoxide dismutase (SOD)-like activity of obtained nanoparticles were tested and compared using different methods. The influence of bovine and human albumins on CAT- and peroxidase-like activity was examined. Moreover, in the case of CAT-like activity, an influence of pH and temperature was examined and compared. Determination of SOD-like activity using the methods described for the examination of the activity of native enzyme was not fully successful. Moreover, cytotoxicity of chosen nanoparticles was studied on both regular and tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.