Circular Supply Chain Management (CSCM) incorporates the economy concept into supply chain concepts, which gives the supply chain sustainability domain an innovative and convincing viewpoint. The challenging factors in the circular economy are cooperation, trust, and transparency. Therefore, to achieve sustainable results, collaboration, and openness between organizations within networks and value chains are required. This paper explores the sustainability success using the Sustainable Circular Business Model (SCBM) to incorporate the principle at an operational level and suggest a structure for combining Circular Business Model (CBM) and CSCM for sustainable growth. The proposed structure shows how various circular business structures power the global supply chain in multiple loops. The circular business models differ according to the difficulty of the Circular Supply Chain (CSC) and the value proposition. Proposed SCBM shows that circular market and supply chain aid in reaching goals for sustainability has been discussed in this research.
Whenever a hand or a rotary instrument is used to eliminate tooth tissue, the mineralized matrix shatters rather then being uniformly sheared, producing considerably quantities of cutting debris. Much of the debris made up of very small particles of mineralized collagen matrix over the surface of dentin is known as smear layer. The clinical outcome of dental restorations is dependent upon the surface preparations, smear layer formation and hybrid layer which which provides a stable adhesion. Different surface morphology is produced by use of different burs. The thickness of the smear layer is affected by various factors as type of the bur, use of water spray and speed of rotation. Bonding is enhanced when smear layer is completely removed or modifed. The purpose of this in vitro study is to evaluate the effect of different burs on the topography of the smear layer formation and thickness on dentinal surface.
Calcium ion-releasing ability of different calcium hydroxide-based pulp capping materials was comparatively evaluated in this study. Different brands of cements were taken from different manufacturers and categorized into three groups. Three different brands of Ca(OH)2 cements (Dycal, TheraCal, and Cal LC) were taken prepared by mixing and curing the cements as per the manufacturer’s instructions. Consequently, ion release was measured after 7, 14, and 21 days by argon-based induction coupled plasma mass spectroscopy test. Within the limitations of this study, light-cured Ca(OH)2 cements released a higher amount of calcium ions compared with self-cured Ca(OH)2 cements. Theracal was found to be the highest light-cured calcium ion releasing materials throughout the period of 21 days. In conclusion, further clinical studies are warranted to substantiate the findings of this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.