Honeybees, Apis mellifera, are important pollinators of many economically important crops. However, one of the reasons for their decline is pathogenic infection. Nosema disease and American foulbrood (AFB) disease are the most common bee pathogens that propagate in the gut of honeybees. This study investigated the impact of gut-propagating pathogens, including Nosema ceranae and Paenibacillus larvae, on bacterial communities in the gut of A. mellifera using 454-pyrosequencing. Pyrosequencing results showed that N. ceranae was implicated in the elimination of Serratia and the dramatic increase in Snodgrassella and Bartonella in adult bees’ guts, while bacterial communities of P. larvae-infected larvae were not affected by the infection. The results indicated that only N. ceranae had an impact on some core bacteria in the gut of A. mellifera through increasing core gut bacteria, therefore leading to the induction of dysbiosis in the bees’ gut.
Honeybee drones are male bees that mate with virgin queens during the mating flight, consequently transferring their genes to offspring. Therefore, the health of drones affects the overall fitness of the offspring and ultimately the survivability of the colony. Honeybee viruses are considered to be a major threat to the health of honeybees. In the present study, we demonstrated the pattern of common honeybee viruses in various tissues of drones in the western honeybee, Apis mellifera, and the eastern honeybee, Apis cerana. Drones were collected during the mating flight and analyzed using quantitative real-time (qRT-PCR) to detect the presence of seven honeybee viruses. The qRT-PCR result revealed that three honeybee viruses, namely Black Queen Cell Virus (BQCV), Deformed Wing Virus (DWV), and Chinese Sacbrood Virus (CSBV), were detected in the reproductive tissues of A. mellifera and A. cerana drones. The results from qRT-PCR showed that the Israeli Acute Paralysis Virus (IAPV) was only detected in A. mellifera drone body tissues. Moreover, the prevalence of DWV and BQCV in the drones collected from A. mellifera colonies was significantly higher than that of A. cerana. In addition, virus multiple infections were higher in A. mellifera drones compared to those in A. cerana. CSBV was found predominantly in the reproductive tissues of A. cerana drones. This study is the first report describing the presence of the CSBV in reproductive tissues of A. mellifera drones. Our results may reflect the preference of honeybee viruses in honeybee species and may provide a piece of interesting evidence for understanding the virus transmission in A. cerana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.