Heavy metals such as arsenic contribute to environmental pollution that can lead to systemic effects in various body organs. Some medicinal plants such as broccoli have been shown to reduce the harmful effects of these heavy metals. The main aim of the present study is to evaluate the effects of broccoli extract on liver and kidney toxicity, considering hematological and biochemical changes. The experimental study was performed in 28 days on 32 male Wistar rats classified into four groups: the control group (C), a group receiving 5 mg/kg oral arsenic (AS), a group receiving 300 mg/kg broccoli (B), and a group receiving arsenic and broccoli combination (AS + B). Finally, blood samples were taken to evaluate the hematological and biochemical parameters of the liver and kidney, as well as serum proteins’ concentration. Liver and kidney tissue were fixed and stained by H&E and used for histopathological diagnosis. The results demonstrated a significant decrease in white blood cells (WBC), red blood cells (RBC), and hemoglobin (Hb) in the AS group compared to other groups. However, in the B group, a significant increase in RBC and WBC was observed compared to the AS and C groups (
P
< 0.05). Moreover, RBC and WBC levels increased significantly in the AS + B group compared to the AS group (
P
= 0.046). However, in the AS group, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine levels increased, while total protein, albumin, and globulin decreased. This can be a result of liver and kidney damage, which was observed in the AS group. Furthermore, the increase in the concentration of albumin and globulin in the AS + B group was higher than that in the AS group. Infiltration of inflammatory cells and necrosis of the liver and kidney tissue in the pathological evaluation of the AS group were significantly higher than other groups. There was an increase in superoxide dismutases (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC); however, a decrease in malondialdehyde (MDA) concentration was seen in the AS + B group compared to the AS group. It seems that broccoli is highly effective at reducing liver and kidney damage and improving the hematological and biochemical factors in arsenic poisoning conditions.
The removal of dye from textile industry wastewater using a photo-Fenton like catalyst system was investigated wherein the removal efficiency of phenol and chemical oxygen demand (COD) was studied by varying various parameters of pH (3–11), reaction time (1–50 min), activated Carbon/CoFe2O4 (AC/CFO) nanocomposite dosage (0.1–0.9 g/L), and persulfate amount (1–9 mM/L). The highest removal rates of reactive red 198 and COD were found to be 100% and 98%, respectively, for real wastewater under the optimal conditions of pH = 6.5, AC/CFO nanocomposite dosage (0.3 g/L), reaction time, 25 min, and persulfate dose of 5 mM/L up on constant UV light irradiation (30 W) at ambient room temperature. The result showed that this system is a viable and highly efficient remediation protocol relative to other advanced oxidation processes; inexpensive nature, the ease of operation, use of earth-abundant materials, and reusability for removal of organic pollutants being the salient attributes.
a b s t r a c tThe aim of this study was to optimize aspirin removal from aqueous solutions by the UV/ ZnO photocatalytic process. To this end, the RSM software was used to design the test method. The influence of effective parameters including aspirin initial concentration (10-100 mg/L), pH solution (3-11), contact time (10-120 min) and ZnO catalyst dose (100-600 mg/L) was investigated in this process. Based on the results, the highest efficiency of aspirin removal equal to 83.11% was obtained in optimum conditions including solution pH = 5.05, contact time = 90.50 min, ZnO catalyst dose = 375.16 mg/L, and aspirin initial concentration = 33.84 mg/L. Increasing chloride and phosphate ion concentration in a synthetic solution under optimum conditions caused increased and decreased UV/ZnO process efficiency, respectively. The kinetic studies showed that the pseudo-first-order model had the highest correlation with aspirin removal using the UV/ZnO photocatalytic process (R 2 = 0.99). The UV/ZnO photocatalytic process has a high potential for aspirin removal from aqueous solutions and can be used as a convenient option with high performance, low cost and easy operation on an operational scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.