Astrocytic gliomas are the most common and lethal form of intracranial tumors. These tumors are characterized by a significant heterogeneity in terms of cytopathological, transcriptional, and (epi)genomic features. This heterogeneity has made these cancers one of the most challenging types of cancers to study and treat. To uncover these complexities and to have better understanding of the disease initiation and progression, identification, and characterization of underlying cellular and molecular pathways related to (epi)genetics of astrocytic gliomas is crucial. Here, we discuss and summarize molecular and (epi)genetic mechanisms that provide clues as to the pathogenesis of astrocytic gliomas.
Keratin intermediate filaments play an important role in maintaining the integrity of the skin structure. Understanding the importance of this subject is possible with the investigation of keratin defects in epidermolysis bullosa simplex (EBS). Nowadays, in addition to clinical criteria, new molecular diagnostic methods, such as next generation sequencing, can help to distinguish the subgroups of EBS more precisely. Because the most important and most commonly occurring molecular defects in these patients are the defects of keratins 5 and14 (KRT5 and KRT14), comprehending the nature structure of these proteins and their involved processes can be very effective in understanding the pathophysiology of this disease and providing new and effective therapeutic platforms to treat it. Here, we summarized the various aspects of the presence of KRT5 and KRT14 in the epidermis, their relation to the incidence and severity of EBS phenotypes, and the processes with which these proteins can affect them.
Breast cancer is the most common cancer in women, and its high mortality has become one of the biggest health problems globally. Several studies have reported an association between breast cancer and ATM gene variants. This study aimed to demonstrate and analyze the relationship between ATM gene polymorphisms and breast cancer prevalence rate. A systematic literature review was undertaken using the following databases: Medline (PubMed), Web of sciences, Scopus, EMBASE, Cochrane, Ovid, and CINHAL to retrieve all cross-sectional studies between January 1990 and January 2020, which had reported the frequency of ATM variants in patients with breast cancer. A random-effects model was applied to calculate the pooled prevalence with a 95% confidence interval. The pooled prevalence of ATM variants in patients with breast cancer was 7% (95% CI: 5−8%). Also, the pooled estimate based on type of variants was 6% (95% CI: 4−8%; I square: 94%; P: 0.00) for total variants¸ 0% (95% CI: 0−1%; I square: 0%; P: 0.59) for deletion variants, 12% (95% CI: 7−18%; I square: 99%; P: 0.00) for substitution variants, and 2% (95% CI: 4−9%; I square: 67%; P: 0.08) for insertion variants. This meta-analysis showed that there is a significant relationship between ATM variants in breast cancer patients. Further studies are required to determine which of the variants of the ATM gene are associated with BRCA mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.