Several studies have characterized drug-induced toxicity in liver and kidney. However, the majority of these studies have been performed with 'individual' organs in isolation. Separately, little is known about the role of whole blood as a surrogate tissue in drug-induced toxicity. Accordingly, we investigated the 'concurrent' response of liver, kidney and whole blood during a toxic assault. Rats were acutely treated with therapeutics (acetaminophen, rosiglitazone, fluconazole, isoniazid, cyclophosphamide, amphotericin B, gentamicin and cisplatin) reported for their liver and/or kidney toxicity. Changes in clinical chemistry parameters (e.g. AST, urea) and/or observed microscopic tissue damage confirmed induced hepatotoxicity and/or nephrotoxicity by all drugs. Drug-induced toxicity was not confined to an 'individual' organ. Not all drugs elicited significant alterations in phenotypic parameters of toxicity (e.g. ALT, creatinine). Accordingly, the transcriptional profile of the organs was studied using a toxicity panel of 30 genes derived from literature. Each of the test drugs generated specific gene expression patterns which were unique for all three organs. Hierarchical cluster analyses of purported hepatotoxicants and nephrotoxicants each led to characteristic 'fingerprints' (e.g. decrease in Cyp3a1 indicative of hepatotoxicity; increase in Spp1 and decrease in Gstp1 indicative of nephrotoxicity). In whole blood cells, a set of genes was derived which closely correlated with individual drug-induced concomitant changes in liver or kidney. Collectively, these data demonstrate drug-induced multi-organ toxicity. Furthermore, our findings underscore the importance of transcriptional profiling during inadequate phenotypic anchorage and suggest that whole blood may be judiciously used as a surrogate for drug-induced extra-hematological organ toxicity.
BackgroundTumors of the head and neck present aggressive pathological behavior in patients due to high expression of CDK/CCND1 proteins. P276-00, a novel CDK inhibitor currently being tested in clinic, inhibits growth of several cancers in vitro and in vivo. The pre clinical activity of P276-00 in head and neck cancer and its potential mechanisms of action at molecular level are the focus of the current studies.MethodWe have investigated the anti-cancer activity of P276-00 in head and neck tumors in vitro and in vivo. Candidate gene expression profiling and cell based proteomic approaches were taken to understand the pathways affected by P276-00 treatment.ResultsIt was observed that P276-00 is cytotoxic across various HNSCC cell lines with an IC50 ranging from 1.0-1.5 μmoles/L and culminated in significant cell-cycle arrest in G1/S phase followed by apoptosis. P276-00 treatment suppressed cell proliferation through inhibition of CCND1 expression, reduced phosphorylation of retinoblastoma protein and abrogative transcription of E2F1 gene targets. Further, we observed that apoptosis was mediated through P53 activation leading to higher BAX/BCL-2 ratio and cleaved caspase-3 levels. It was also seen that P276-00 treatment reduced expression of tumor micro-environment proteins such as IL-6, secreted EGFR and HSPA8. Finally, P276-00 treatment resulted in significant tumor growth inhibition in xenograft tumor models via lowered proliferative activity of E2F1 and aggravated P53 mediated apoptosis.ConclusionIn summary, we have observed that P276-00 inhibits cyclin-D/CDK4/P16/pRB/E2F axis and induces apoptosis by increased P53 phosphorylation in HNSCC cells. These results suggest a novel indication for P276-00 in head and neck cancer with a potential role for IL-6 and HSPA8 as candidate serum biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.