Abstract-In the context of acoustic echo cancellation (AEC), it is shown that the level of sparseness in acoustic impulse responses can vary greatly in a mobile environment. When the response is strongly sparse, convergence of conventional approaches is poor. Drawing on techniques originally developed for network echo cancellation (NEC), we propose a class of AEC algorithms that can not only work well in both sparse and dispersive circumstances, but also adapt dynamically to the level of sparseness using a new sparseness-controlled approach. Simulation results, using white Gaussian noise (WGN) and speech input signals, show improved performance over existing methods. The proposed algorithms achieve these improvement with only a modest increase in computational complexity.Index Terms-Acoustic echo cancellation (AEC), network echo cancellation (NEC), sparse impulse responses, adaptive algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.