The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlled release of oxybutynin. The porous osmotic pump contains pore-forming water-soluble additives in the coating membrane, which after coming in contact with water, dissolve, resulting in an in situ formation of a microporous structure. The dosage regimen of oxybutynin is one 5-mg tablet 2 to 3 times a day. The plasma half-life ranges from~2 to 3 hours. Hence, oxybutynin was chosen as a model drug with an aim to develop a controlled release system for a period of 24 hours. Linear and reproducible release similar to that of Ditropan XL was achieved for optimized formulation (f2 950) independent of hydrodynamic conditions. The effect of different formulation variables, namely, ratio of drug to osmogent, membrane weight gain, and level of pore former on the in vitro release was studied. Cellulose acetate (CA) was used as the semipermeable membrane. It was found that drug release rate increased with the amount of osmogent because of the increased water uptake, and hence increased driving force for drug release. Oxybutynin release was inversely proportional to the membrane weight gain; however, directly related to the level of pore former, sorbitol, in the membrane. This system was found to deliver oxybutynin at a zero-order rate for 20 hours. The effect of pH on drug release was also studied. The optimized formulations were subjected to stability studies as per International Conference on Harmonisation (ICH) guidelines and formulations were stable after a 3 month study.
A reverse phase high performance liquid chromatography (HPLC) method has been developed for the separation of two geometric isomers of Acrivastine using crude reaction mixture. The resolution between two isomers was found more than 2.9. The geometric isomers have been isolated by preparative HPLC and characterized by spectroscopic techniques, such as NMR, infrared, and MS. The developed method has been validated for the determination of Z-isomer in Acrivastine. The limit of detection and limit of quantification of the Z-isomer were 0.05 and 0.2 μg/ml, respectively. The developed method is precise, linear, accurate, rugged and robust for its intended use.
This study describes successful method development and separation of two stereo isomers of 2-[4-(methylsulfonyl)phenyl]-3-(3(R)-oxocyclopentyl)propanoic acid by reverse phase high-performance liquid chromatography. Baseline resolution was achieved on a J'sphere-ODS-H80 (150 mm × 4.6 mm, 4 μm) column using mobile phase consisting of 0.05% triflouroacetic acid in water-acetonitrile (85:15, v/v) at a flow rate of 1.0 ml/min. The detection was carried out at 228 nm. The title compound, in turn, can be obtained by C-alkylation of methyl 2-[4-(methylthio)phenyl]acetate with 2(S)-iodomethyl-8,8-dimethyl-6,10-dioxaspiro[4.5]decane followed by consecutive hydrolysis and oxidation. The partially validated analytical method (system suitability, peak homogeneity, linearity, precision, robustness, and solution stability) has limit of detection and limit of quantification, 0.15 and 0.50 μg/ml respectively. Alternatively, the new method is being routinely utilized to monitor epimerization of α-carbon of the propanoic acid in the title compound by crystallization-induced dynamic resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.