Natural antioxidants present in several medicinal plants are responsible for inhibiting the harmful effects of oxidative stress. These plants contain polyphenols and flavonoids that act as free radical scavengers and reduce oxidative stress and may be an alternative remedy to cure various harmful human diseases. This study aims to quantify the total phenolic and flavonoid contents (TPC and TFC) and antioxidant properties of methanol extracts of fruits, seeds, and bark of an important medicinal and aromatic plant, Zanthoxylum armatum collected from wild and cultivated populations in Nepal. TPC was determined by Folin–Ciocalteu colorimetric method using gallic acid as standard, and various concentrations of the extract solutions were measured at 760 nm. TFC was calculated by aluminum chloride colorimetric assay. Quercetin was used as standard, and the absorbance was measured at 510 nm. The antioxidant potential of the different extracts was estimated by DPPH free radical scavenging assay, and the absorbance was measured at 517 nm. The highest TPC value was 226.3 ± 1.14 mg GAE/g in wild fruits, and the lowest was 137.72 ± 4.21 mg GAE/g in cultivated seeds. Similarly, the highest TFC value was 135.17 ± 2.02 mg QE/g in cultivated fruits, and the lowest was 76.58 ± 4.18 mg QE/g in cultivated seeds. The extracts showed variable antioxidant properties. The fruits exhibited excellent antioxidant properties with IC50 values of 40.62 μg/mL and 45.62 μg/mL for cultivated and wild fruits, respectively. Similarly, the IC50 values of the bark were 63.39 μg/mL and 67.82 μg/mL, respectively, for cultivated and wild samples. And the least antioxidant capacity was shown by the seeds extract with IC50 values of 86.75 μg/mL and 94.49 μg/mL for wild and cultivated seeds, respectively. The IC50 value of the standard ascorbic acid was 36.22 μg/mL. Different extracts of Z. armatum contain considerable amount of phenols and flavonoids, including antioxidant properties, suggesting the potential use of this species in pharmacy and phytotherapy as a source of natural antioxidants.
Allelopathic effects of aqueous extract of leaves of Parthenium hysterophorus were studied on seed germination and seedling growth of three cereal crops (Oryza sativa L., Zea mays L. and Triticum aestivum L.), three cultivated crucifers (Raphanus sativus L., Brassica campestris L. and Brassica oleracea L.) and two wild species of family Asteraceae (Artemisia dubia Wall ex. Besser and Ageratina adenophora (Spreng) King and HE Robins). Seed germination of all crucifer species was completely inhibited at >2% leaf extract of Parthenium hysterophorus but in other species, except maize, complete failure of seed germination was recorded only at >6% in Triticum aestivum and Ageratina adenophora; at 10% in Oryza sativa and Artemisia dubia. Seed germination of Zea mays was not completely inhibited but it was low at high concentration of the extract. The extract had strong inhibitory effect to root elongation of seedling in cereals and to shoot elongation in crucifers and wild Asteraceae. Leaves of Parthenium hysterophorus may be a source of natural weedicide against Ageratina adenophora which will help to control invasive plants.
Summary
Biological invasion is increasing worldwide and the management of invasive species is becoming an important priority for vegetation managers. Success of invasive species management depends on a thorough understanding of the biology of the organism in question and the effectiveness of current management efforts, in order to identify the best practices for management improvement. In this review, we synthesised current biological knowledge of a noxious invasive weed Ageratina adenophora to identify knowledge gaps and assessed management efforts to identify best practices. Finally, we proposed some priority areas for future research to fill knowledge gaps and improve management. Our analysis showed that A. adenophora has already invaded 40 countries, mainly in Asia, Oceania, Africa and Europe. Phenotypic plasticity, allelopathic interference and invasion‐mediated changes in the soil microbial community are the proposed mechanisms that facilitate rapid spread of this weed. However, allelopathy as a mechanism of invasion success of this weed has not been supported by ecologically meaningful experiments. Though mechanical, chemical and biological control measures have been used, their success remains limited and the weed continues to spread in new regions. Among seven biological control agents examined to date, gall fly (Procecidochares utilis) and leaf spot fungus (Passalora ageratinae) have been effective in limited areas to suppress growth of this weed. Some perennial native grasses (e.g. Setaria sphacellata and Lolium perenne) have shown potential to competitively suppress A. adenophora. In conclusion, understanding the invasion mechanisms, exploring further to identify effective biological control agents, combined with approaches of ecological restoration, could help in the management of this weed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.