An alkaliphilic actinomycete, BCI-1, was isolated from soil samples collected from Saurashtra University campus, Gujarat. Isolated strain was identified as Streptomyces werraensis based on morphological, biochemical and phylogenetic analysis. Maximum antibiotic production was obtained in media containing sucrose 2%, Yeast extract 1.5%, and NaCl 2.5% at pH 9.0 for 7 days at 30 °C. Maximum inhibitory compound was produced at pH 9 and at 30 °C. FTIR revealed imine, amine, alkane (CC) of aromatic ring and p-di substituted benzene, whereas HPLC analysis of partially purified compound and library search confirmed 95% peaks matches with erythromycin. Chloroform extracted isolated compound showed MIC values 1 μg/ml against Bacillus subtilis, ≤0.5 μg/ml against Staphylococcus aureus, ≤0.5 μg/ml against Escherichia coli and 2.0 μg/ml against Serretia GSD2 sp., which is more effective in comparison to ehtylacetate and methanol extracted compounds. The study holds significance as only few alkaliphilic actinomycetes have been explored for their antimicrobial potential.
BackgroundTotal three Pleurotus species (P. ostreatus, P. sapidus, P. florida) was compared for ligninolytic enzyme production grown with Coralene Golden Yellow, Coralene Navy Blue and Coralene Dark Red azo dyes in liquid medium under shaking condition.ResultsThe biodegradation competency varied from species to species and it was found that P. ostreatus, P. sapidus and P. florida to 20 ppm dye concentration shows 88, 92 and 98 % decolorization, respectively for all three dyes. Production pattern of laccase, manganese dependent peroxidase and lignin peroxidase were studied during the growth of the organisms for 10 days. Laccase was found to be the major extracellular ligninolytic enzyme produced by fungus with negligible detection of lignin peroxidases. In all concentration of three dye studied, maximum laccase activity was observed on day 8, for 20 mg/l of dye laccase specific activity was 1–1.58 U/mg in P. ostreatus, 0.5–0.78 U/mg in P. sapidus and 1–1.92 U/mg in P. florida. Different factors (dye concentration, pH, protein and sugar estimation) influencing the ability of Pleurotus species to degrade dyes is documented and degradation was attributed to microbial action irrespective of pH change. HPTLC analysis of samples indicated degradation of dyes into intermediate products.ConclusionLevel of ligninolytic enzymes is playing a major role in degradation of dye, which is dependent on time of incubation and species of fungi.
The use of bacterial l-asparaginase (LA) is one of the alternative approaches for acrylamide reduction in food stuffs as it catalyzes the conversion of l-asparagine to l-aspartic acid and ammonia. In present investigation, purification of extracellular LA from isolate of Bacillus subtilis sp. strain KDPS-1 was carried out by solid state fermentation process. The effects of solid substrates, initial moisture content, moistening agents, temperature, and incubation time on LA production was studied, and the highest asparaginase activity (47 IU/ml) was achieved in the medium having orange peel as substrate. The enzyme was purified to homogeneity by diethylaminoethyl (DEAE) cellulose ion exchange chromatography; with 84.89 % yield and 12.11 fold purity. LA showed stimulant activity against β-mercaptoethanol and was greatly inhibited by Zn2+ and Hg2+ metal ions. Reduction of acrylamide in fried potatoes was detected by high performance liquid chromatography, which showed clear degradation of acrylamide by height and area (%) in the chromatograms of standard sample to that of the test sample. Hydrolysates analysis by high performance thin layer chromatography confirmed the test sample to be LA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.