AbstrakSekam padi merupakan salah satu sumber penghasil silika terbesar, berpotensi sebagai bahan pembuatan silika gel. Abu sekam padi mengandung silika sebanyak 87%-97% berat kering. Sintesis silika gel dari abu sekam padi dilakukan dengan mereaksikan abu sekam padi menggunakan larutan NaOH 1N pada suhu 800C selama 1 jam dan dilanjutkan dengan penambahan larutan asam hingga pH=7. Gel yang dihasilkan selanjutnya didiamkan selama 18 jam kemudian dikeringkan pada suhu dikeringkan menggunakan oven pada suhu 800C hingga beratnya konstan. Hasil percobaan diperoleh bahwa silika gel dengan penambahan CH3COOH menghasilkan yield yang lebih besar dibandingkan penambahan HCl. Berdasarkan analisis FT-IR silika gel yang diperoleh memiliki gugus Si-O-Si dan gugus Si-OH. Silika gel dengan penambahan HCl memiliki surface area sebesar 65,558 m2/g, total pore volume 0,1935 cc/g, dan average pore size sebesar 59,0196 Å. Sedangkan silika gel dengan penambahan CH3COOH memiliki surface area sebesar 9,685 m2/g, total pore volume 0,02118 cc/g, dan average pore size sebesar 43,7357Å. Silika gel dengan penambahan CH3COOH memiliki kemampuan menyerap kelembaban udara yang lebih baik dibanding silika gel dengan penambahan HCl. Abstract
Nyamplung (Calophyllum inophyllum) is a typical Indonesian plant. Its seed contains abundant inedible oil, and therefore it is potential for biodiesel feedstock. The current issues of biodiesel are longer reaction time of oil to biodiesel through transesterification reaction and lower biodiesel yield due to ineffective use of a homogenous catalyst. This work was aimed to use an ionic liquid as a catalyst and equipped with microwave heating as the heating system in order to increase the biodiesel yield and accelerate the process. Effects of the catalyst concentration and power of microwave irradiation to the biodiesel yield were studied. The ionic liquid of 1-butyl-3-methylimidazolium hydrogen sulfate (BMIMHSO4) was used as a catalyst. The results showed that the highest biodiesel yield was achieved of 92.81% which was catalyzed by IL0.5NaOH0.5 (0.5 wt.% (BMIMHSO4) + 0.5 wt.% NaOH) with a methanol-to-oil molar ratio of 9, a reaction time of 6 minutes, and the microwave temperature was 60 °C. Copyright © 2017 BCREC Group. All rights reservedReceived: 21st November 2016; Revised: 7th March 2017; Accepted: 9th March 2017How to Cite: Handayani, P.A., Abdullah, A., Hadiyanto, H. (2017). Biodiesel Production from Nyamplung (Calophyllum inophyllum) Oil using Ionic Liquid as A Catalyst and Microwave Heating System. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 293-298 (doi:10.9767/bcrec.12.2.807.293-298)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.807.293-298
Biodiesel is one of the promising energy source alternatives to fossil fuel. To produce biodiesel in a more economical way, the employment of the low-cost feed stocks, such as non-edible oils with high free fatty acid (FFA), is necessary. Accordingly, the esterification reaction of FFA in vegetable oils plays an important role in the biodiesel production. In this work, esterification of FFA contained in Crude Jatropha Oil in the presence of tin (II) chloride catalyst in a batch reactor has been carried out. The esterification reaction was conducted using methanol at the temperature of 40-60 C for 4 hours. The effect of molar ratio of methanol to oil was studied in the range 15:1 to 120:1. The influence of catalyst loading was investigated in the range of 2.5 to 15% w/w oil. The optimum reaction conversion was obtained at 60 C with the catalyst loading of 10% w/w oil and molar ratio of methanol to oil of 120:1. A pseudo-homogeneous irreversible second order kinetic model for describing the esterification of oleic acid with methanol over tin (II) chloride catalyst was developed based on the experimental data. The kinetic model can fit the data very well.
Vinasse, which is commonly referred to as stillage, is a aqueous by-product of bioethanol processing. This side-product is yielded in a very large quantity in bioethanol industry since the production of 1 L of ethanol will generate 13 L of vinasse. Hence it is become a problem of bioethanol industry since vinasse waste doesn't have economic value and harmful to the environment. This industrial waste has high COD and BOD, high acidity, and high temperature when discharged from the bottom of distillation unit. To overwhelmed this drawbacks, it is crucial to attempt the reduction of the negative characteristic of vinasse as well as production of added value of vinasse. In fact, vinasse contains a considerable amount of potassium and organic matter which is beneficial for plant growth and improving the soil fertility. Thus, in this work, vinasse was utilized as a raw material for organic fertilizer. Vinasse waste was formulated with other sugarcane industrial waste (filter cake and boiler ash), and NPK fertilizer in various composition yielding solid Organo-Mineral Fertilizer (OMF). Among all the composition of OMF, It was demonstrated that vinasse formulated with 3, 6, and 9% of NPK fulfilled the Indonesian National Standar (SNI) of solid fertilizer. Thus these types of OMF were used to fertilize tomato plant. The effects of vinasse-based OMF on some growth indices of tomato plant were examined. It was revealed that vinasse fertilizer formulated with 9% of NPK exhibited the best impact to the tomato plant growth.
Isopropyl alcohol is widely used as industrial chemical intermediates and common solvents in households, pharmaceuticals, food, cosmetics, and medical purposes. The high purity of isopropyl alcohol requires special separation from its impurity i.e. water due to isopropyl alcohol and water form an azeotropic point, which is difficult to separate using a conventional distillation method. The azeotropic point of this mixture is at isopropyl alcohol mole fraction of 0.68 and temperature of 353.4 K. One of the optimum methods to separate an azeotrope point is through the extractive distillation which use a third component as a solvent. Glycerol is one of the solvents which can be used as a potential entrainer in the extractive distillation. Glycerol is produced in the biodiesel production as a by-product. Moreover, glycerol is an eco-friendly chemical. In this work, the simulation of the extractive distillation of isopropyl alcohol/water system with glycerol as an entrainer was simulated using Aspen Plus. The Non-Random Two-Liquid (NRTL) model was used as thermodynamic model in the simulation. The effect of stage number, binary feed stage, entrainer feed stage, and reflux ratio to the purity of isopropyl alcohol, and reboiler-condenser duties were examined to achieve the optimum design for the extractive distillation column with less energy requirements. The simulation results showed that the optimum configurations in the extractive distillation column design are at 25 theoretical stages, binary feed stage (BFS) of 20, entrainer feed stage (EFS) of 2, and reflux ratio (RR) of 0.5 to produce isopropyl alcohol with the purity of 99.27%. The design and sizing of the extractive distillation column were also proposed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.