Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) caused by demyelination, immune cell infiltration, and axonal damage. Herein, we sought to investigate the influence of physical exercise on mice experimental autoimmune encephalomyelitis (EAE), a reported MS model. Data show that both strength and endurance training protocols consistently prevented clinical signs of EAE and decreased oxidative stress, an effect which was likely due to improving genomic antioxidant defense-nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response elements (ARE) pathway-in the CNS. In addition, physical exercise inhibited the production of pro-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-17, and IL-1β in the spinal cord of mice with EAE. Of note, spleen cells obtained from strength training group incubated with MOG showed a significant upregulation of CD25 and IL-10 levels, with a decrease of IL-6, MCP-1, and tumor necrosis factor (TNF)-α production, mainly, during acute and chronic phase of EAE. Moreover, these immunomodulatory effects of exercise were associated with reduced expression of adhesion molecules, especially of platelet and endothelial cell adhesion molecule 1 (PECAM-1). Finally, physical exercise also restored the expression of tight junctions in spinal cord. Together, these results demonstrate that mild/moderate physical exercise, when performed regularly in mice, consistently attenuates the progression and pathological hallmarks of EAE, thereby representing an important non-pharmacological intervention for the improvement of immune-mediated diseases such as MS. Graphical Abstract Schematic diagram illustrating the beneficial effects of physical exercise during experimental model of MS. Physical exercise, especially strength (ST) and endurance (ET) training protocols, inhibits the development and progression of disease, measured by the mean maximal clinical score (1.5 and 1.0, respectively), with inhibition of 30 % and 50 %, respectively, based on the AUC, compared with EAEuntreated group. In addition, ST and ET decreased oxidative stress, possibly, through genomic antioxidant defense, Nrf2-Keap1 signaling pathway, in the CNS. Physical exercise inhibited the production of inflammatory cytokines, such as IFN-γ, IL-17 and IL-1β in the spinal cord after EAE induction, as well as spleen cells obtained from ST group showed a significant upregulation of regulatory T cell markers, such as CD25 and IL-10 levels, and blocked IL-6, MCP-1 and TNF-α production, mainly, during acute and chronic phase of EAE. Finally, these immunomodulatory effects of exercise were associated with inhibition of adhesion molecules and reestablishment of tight junctions expression in spinal cord tissue, thereby limiting BBB permeability and transmigration of autoreactive T cells to the CNS. NO, nitric oxide; GPx, glutathione peroxidase, GSH, glutathione; Nrf2, nuclear factor (erythroid-derived 2)-like 2; CNS, central nervous system; BBB, blood-brain barrier; IFN-g, interferon-gam...
Infrequent exercise, typically involving eccentric actions, has been shown to cause oxidative stress and to damage muscle tissue. High taurine levels are present in skeletal muscle and may play a role in cellular defences against free radical-mediated damage. This study investigates the effects of taurine supplementation on oxidative stress biomarkers after eccentric exercise (EE). Twenty-four male rats were divided into the following groups (n = 6): control; EE; EE plus taurine (EE + Taurine); EE plus saline (EE + Saline). Taurine was administered as a 1-ml 300 mg kg(-1) per body weight (BW) day(-1) solution in water by gavage, for 15 consecutive days. Starting on the 14th day of supplementation, the animals were submitted to one 90-min downhill run session and constant velocity of 1·0 km h(-1) . Forty-eight hours after the exercise session, the animals were killed and the quadriceps muscles were surgically removed. Production of superoxide anion, creatine kinase (CK) levels, lipoperoxidation, carbonylation, total thiol content and antioxidant enzyme were analysed. Taurine supplementation was found to decrease superoxide radical production, CK, lipoperoxidation and carbonylation levels and increased total thiol content in skeletal muscle, but it did not affect antioxidant enzyme activity after EE. The present study suggests that taurine affects skeletal muscle contraction by decreasing oxidative stress, in association with decreased superoxide radical production.
This study aimed to evaluate the effects of two different protocols for physical exercise (strength and aerobic training) on mitochondrial and inflammatory parameters in the 6-OHDA experimental model of Parkinson's disease. Six experimental groups were used (n = 12 per group): untrained + vehicle (Sham), strength training + vehicle (STR), treadmill training + vehicle (TTR), untrained + 6-OHDA (U + 6-OHDA), strength training + 6-OHDA (STR + 6-OHDA), and treadmill training + 6-OHDA (TTR + 6-OHDA). The mice were subjected to strength or treadmill training for 8 weeks. PD was induced via striatal injection of 6-OHDA 24 h after the last exercise session. Mice were euthanized by cervical dislocation and the striatum and hippocampus were homogenized to determine levels of tyrosine hydroxylase (TH), nuclear factor kappa B (NF-κB) p65, and sirtuin 1 (Sirt1) by western blot; tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-17, interferon-γ (IFN-γ), and transforming growth factor β1 (TGF-β1) levels by ELISA; NO content; and complex I (CI) activity. STR + 6-OHDA mice had higher TH levels and CI activity and lower NF-κB p65 and IFN-γ levels in the striatum compared to U + 6-OHDA mice, while TTR + 6-OHDA mice had higher Sirt1 levels and CI activity in both the striatum and the hippocampus, compared to U + 6-OHDA mice. Strength training increased CI activity and TH and Sirt1 levels and reduced NO, NF-κB p65, TNF-α, IFN-γ, IL-1β, and TGF-β1 levels in 6-OHDA mice, while treadmill exercise increased CI activity and NO, TH, and Sirt1 levels and reduced NF-κB p65, TNF-α, IFN-γ, and IL-1β levels. Our results demonstrated that both treadmill training and strength training promote neuroprotection, possibly by stimulating Sirt1 activity, which may in turn regulate both mitochondrial function and neuroinflammation via deacetylation of NF-κB p65. Changes in nitric oxide levels may also be a mechanism by which 6-OHDA-induced inflammation is controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.