The herpesvirus, polyomavirus, papillomavirus, and retrovirus families are associated with breast cancer. More effort is needed to assess the role of these viruses in the detection and diagnosis of breast cancer cases in women. The aim of this paper is to propose an efficient segmentation and classification system in the Mammography Image Analysis Society (MIAS) images of medical images. Segmentation became challenging for medical images because they are not illuminated in the correct way. The role of segmentation is essential in concern with detecting syndromes in human. This research work is on the segmentation of medical images based on intuitionistic possibilistic fuzzy c-mean (IPFCM) clustering. Intuitionist fuzzy c-mean (IFCM) and possibilistic fuzzy c-mean (PFCM) algorithms are hybridised to deal with problems of fuzzy c-mean. The introduced clustering methodology, in this article, retains the positive points of PFCM which helps to overcome the problem of the coincident clusters, thus the noise and less sensitivity to the outlier. The IPFCM improves the fundamentals of fuzzy c-mean by using intuitionist fuzzy sets. For the clustering of mammogram images for breast cancer detector of abnormal images, IPFCM technique has been applied. The proposed method has been compared with other available fuzzy clustering methods to prove the efficacy of the proposed approach. We compared support vector machine (SVM), decision tree (DT), rough set data analysis (RSDA) and Fuzzy-SVM classification algorithms for achieving an optimal classification result. The outcomes of the studies show that the proposed approach is highly effective with clustering and also with classification of breast cancer. The performance average segmentation accuracy for MIAS images with different noise level 5%, 7% and 9% of IPFCM is 91.25%, 87.50% and 85.30% accordingly. The average classification accuracy rates of the methods (Otsu, Fuzzy c-mean, IFCM, PFCM and IPFCM) for Fuzzy-SVM are 79.69%, 92.19%, 93.13%, 95.00%, and 98.85%, respectively.
Recent advances in deep learning, coupled with the onslaught of unlabelled medical data have drawn ever-increasing research interests by discovering multiple levels of distributed representations and solving complex medical related problems. Malaria disease detection in early stage requires an accurate and precise diagnosis in order to achieve successful patient remission. This paper proposes a comprehensive computer-aided diagnosis (CAD) scheme for identifying the presence of malaria parasites in thick blood smear images. The parameters of the scheme are pre-trained by functional link artificial neural network followed by sparse stacked autoencoder. The optimum size of the CAD scheme used in this research is 12500-2500-100-50-2, where the input layer has 12500 nodes and Softmax classifier output layer has 2 nodes. Moreover, the 10-fold cross validation reflects that the classification is reliable and is applicable to new patient blood smear images. The proposed CAD scheme has been evaluated using malaria blood smear image data set, achieving a detection accuracy of 89.10%, a sensitivity of 93.90% and specificity of 83.10%. The extensive comparative experiment suggests that the proposed CAD scheme provides richer effectiveness and efficiency for malaria data set compared to other deep learning techniques for better diagnosis decision and management. This work implements a novel approach to fast processing and will be a beneficial tool in disease identification.INDEX TERMS Computer-aided diagnosis (CAD), Deep learning, malaria parasite detection, microscopic blood smear images, digital pathology, K-fold cross-validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.