Generation and utilization of pure spin current have revolutionized energy-efficient spintronic devices. Spin pumping effect generates pure spin current, and for its increased efficiency, spin-mixing conductance and interfacial spin transparency are imperative. The plethora of reports available on generation of spin current with giant magnitude overlook the interfacial spin transparency. Here, we investigate spin pumping in β-Ta/CoFeB thin films by an all-optical time-resolved magneto-optical Kerr effect technique. From variation of Gilbert damping with Ta and CoFeB thicknesses, we extract the spin diffusion length of β-Ta and spin-mixing conductances. Consequently, interfacial spin transparency is derived as 0.50 ± 0.03 from the spin Hall magnetoresistance model for the β-Ta/CoFeB interface. Furthermore, invariance of Gilbert damping with Cu spacer layer thickness inserted between β-Ta and CoFeB layers confirms the absence of other interface effects including spin memory loss. This demonstrates a reliable and noninvasive way to determine interfacial spin transparency and signifies its role in generation of pure spin current by spin pumping effect.
Pure spin current has transformed the research field of conventional spintronics due to its various advantages, including energy efficiency. An efficient mechanism for generation of pure spin current is spin pumping, and high effective spinmixing conductance (G eff ) and interfacial spin transparency (T) are essential for its higher efficiency. By employing the time-resolved magneto-optical Kerr effect technique, we report here a giant value of T in substrate/W (t)/Co 20 Fe 60 B 20 (d)/SiO 2 (2 nm) thin-film heterostructures in the beta-tungsten (β-W) phase. We extract the spin diffusion length of W and spin-mixing conductance of the W/CoFeB interface from the variation of damping as a function of W and CoFeB thickness. This leads to a value of T = 0.81 ± 0.03 for the β-W/CoFeB interface. A stark variation of G eff and T with the thickness of the W layer is obtained in accordance with the structural phase transition and resistivity variation of W with its thickness. Effects such as spin memory loss and two-magnon scattering are found to have minor contributions to damping modulation in comparison to the spin pumping effect which is reconfirmed from the unchanged damping constant with the variation of Cu spacer layer thickness inserted between W and CoFeB. The giant interfacial spin transparency and its strong dependence on crystal structures of W will be important for future spin-orbitronic devices based on pure spin current.
Graphene/Ferromagnet hybrid heterostructure is an important building block of spintronics due to unique ability of graphene to transport spin current over unprecedented distance and possible increase in its spin-orbit coupling...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.