Here we report a method for improving the magnetic field sensitivity of an ensemble of Nitrogen-Vacancy (NV) centres in 12 C-enriched diamond aligned along the [111] crystal axis. The preferentially-aligned NV centres are fabricated by a Plasma Enhanced Chemical Vapour Deposition (PECVD) process and their concentration is quantitatively determined by analysing the confocal microscopy images. We further observe that annealing the samples at high temperature (1500 °C) in vacuum leads to a conversion of substitutional nitrogen into NV centres. This treatment also increases the coherence time of the NV centres electron spins up to 40 μs, which corresponds to enhancement of the sensitivity by a factor of three. However, this procedure also leads to a loss of the preferential alignment by 34%.
Temperature is an essential parameter in all biological systems, but information about the actual temperature in living cells is limited. Especially, in photothermal therapy, local intracellular temperature changes induce cell death but the local temperature gradients are not known. Highly sensitive nanothermometers would be required to measure and report local temperature changes independent of the intracellular environment, including pH or ions. Fluorescent nanodiamonds (ND) enable temperature sensing at the nanoscale independent of external conditions. Herein, we prepare ND nanothermometers coated with a nanogel shell and the photothermal agent indocyanine green serves as a heat generator and sensor. Upon irradiation, programmed cell death was induced in cancer cells with high spatial control. In parallel, the increase in local temperature was recorded by the ND nanothermometers. This approach represents a great step forward to record local temperature changes in different cellular environments inside cells and correlate these with thermal biology.
The strong driving regime occurs when a quantum two-level system is driven with an external field whose amplitude is greater or equal to the energy splitting between the system's states, and is typically identified with the breaking of the rotating wave approximation (RWA). We report an experimental study, in which the spin of a single nitrogen-vacancy (NV) center in diamond is strongly driven with microwave (MW) fields of arbitrary polarization. We measure the NV center spin dynamics beyond the RWA, and characterize the limitations of this technique for generating high-fidelity quantum gates. Using circularly polarized MW fields, the NV spin can be harmonically driven in its rotating frame regardless of the field amplitude, thus allowing rotations around arbitrary axes. Our approach can effectively remove the RWA limit in quantum-sensing schemes, and assist in increasing the number of operations in QIP protocols.
The simultaneous control of the number and position of negatively charged nitrogen-vacancy (NV) centers in diamond was achieved. While single near-surface NV centers are known to exhibit outstanding capabilities in external spin sensing, trade-off relationships among the accuracy of the number and position, and the coherence of NV centers have made the use of such engineered NV centers difficult. Namely, low-energy nitrogen implantation with lithographic techniques enables the nanoscale position control but results in degradation of the creation yield and the coherence property. In this paper, we show that low-energy nitrogen ion implantation to a 12 C(99.95%)-enriched homoepitaxial diamond layer using nanomask is applicable to create shallow NV centers with a sufficiently long coherence time for external spin sensing, at a high creation yield. Furthermore, the NV centers were arranged in a regular array so that 40% lattice sites contain single NV centers. The XY8-k measurements using the individual NV centers reveal that the created NV centers have depths from 2 to 12nm, which is comparable to the stopping range of nitrogen ions implanted at 2.5keV. We show that the position-controlled NV centers are capable of external spin sensing with a ultra-high spatial resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.