The publications in this series cover a wide range of subjects-from computer modeling to experience with water user associations-and vary in content from directly applicable research to more basic studies, on which applied work ultimately depends. Some research reports are narrowly focused, analytical and detailed empirical studies; others are wide-ranging and synthetic overviews of generic problems. Although most of the reports are published by IWMI staff and their collaborators, we welcome contributions from others. Each report is reviewed internally by IWMI staff, and by external reviewers. The reports are published and distributed both in hard copy and electronically (www.iwmi.org) and where possible may be copied freely and cited with due acknowledgment.
This study evaluated climate change impacts on stream flow, crop and sediment yields from three different tillage systems (conventional, reduced 1close to conservation, and reduced 2close to no-till), in the Big Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) model was applied to the BSRW using observed stream flow and crop yields data. The model was calibrated and validated successfully using monthly stream flow data (2001 to 2011). The model performances showed the regression coefficient (R 2) from 0.72 to 0.82 and Nash Sutcliffe Efficiency Index (NSE) from 0.70 to 0.81 for streamflow; R 2 from 0.40 to 0.50 and NSE from 0.72 to 0.86 for corn yields; and R 2 from 0.43 to 0.59 and NSE from 0.48 to 0.57 for soybeans yields. The Long Ashton Research Station Weather Generator (LARS-WG), was used to generate future climate scenarios. The SRES (Special Report on Emissions Scenarios) A1B, A2, and B1 climate change scenarios of the Intergovernmental Panel on Climate Change (IPCC) were simulated for the mid (2046-2065) and late (2080-2099) century. Model outputs showed slight differences among tillage practices for corn and soybean yields. However, model simulated sediment yield results indicated a large difference among the tillage practices from the corn and soybean crop fields. The simulated future average maximum temperature showed as high as 4.8°C increase in the BSRW. Monthly precipitation patterns will remain unchanged based on simulated future climate scenarios except for an increase in the frequency of extreme rainfall events occurring in the watershed. On average, the effect of climate change and tillage practice together did not show notable changes to the future crop yields. The reduced tillage 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.