LCLs or locally checkable labelling problems (e.g. maximal independent set, maximal matching, and vertex colouring) in the LOCAL model of computation are very well-understood in cycles (toroidal 1-dimensional grids): every problem has a complexity of O(1), Θ(log * n), or Θ(n), and the design of optimal algorithms can be fully automated.This work develops the complexity theory of LCL problems for toroidal 2-dimensional grids. The complexity classes are the same as in the 1-dimensional case: O(1), Θ(log * n), and Θ(n). However, given an LCL problem it is undecidable whether its complexity is Θ(log * n) or Θ(n) in 2-dimensional grids.Nevertheless, if we correctly guess that the complexity of a problem is Θ(log * n), we can completely automate the design of optimal algorithms. For any problem we can find an algorithm that is of a normal form A • S k , where A is a finite function, S k is an algorithm for finding a maximal independent set in kth power of the grid, and k is a constant.Finally, partially with the help of automated design tools, we classify the complexity of several concrete LCL problems related to colourings and orientations. arXiv:1702.05456v2 [cs.DC] 24 May 2017 1.1 Problem setting: LCL problems on grids 92 33 77 57 49 26 71 79 8 62 48 24 31 21 15 30 60 67 0 5 17 95 23 47 87 80 25 38 20 64 45 61 91 51 69 1 74 55 3 98 88 99 58 53 63 40 16 2 39Grids. In this work, we study distributed algorithms in a setting where the underlying input graph is a grid. Specifically, we consider the complexity of locally checkable labelling problems, or LCL problems, in the standard LOCAL model of distributed complexity, and consider graphs that are toroidal two-dimensional n × n grids with a consistent orientation; we focus on the two-dimensional case for concreteness, but most of our results generalise to d-dimensional grids of arbitrary dimensions. This setting occupies a middle ground between the wellunderstood directed n-cycles [10,32], where all solvable LCL problems are known to have deterministic time complexity either O(1), Θ(log * n) or Θ(n), and the more complicated setting of general n-vertex graphs, where intermediate problems with time complexities such as Θ(log n) are known to exist, even for bounded-degree graphs. Grid-like systems with local dynamics also occur frequently in the study of real-world phenomena. However, grids have so far not been systematically studied from a distributed computing perspective.LOCAL model and LCL problems. In the LOCAL model of distributed computing, nodes are labelled with unique numerical identifiers with O(log n) bits. A time-t algorithm in this model is simply a mapping from radius-t neighbourhoods to local outputs; equivalently, it can be interpreted as a message-passing algorithm in which the nodes exchange messages for t synchronous rounds and then announce their local outputs.LCL problems are graph problems for which the feasibility of a solution can be verified by checking the solution for each O(1)-radius neighbourhood; if all local neighbourhoods look valid, the s...
The model of population protocols refers to a large collection of simple indistinguishable entities, frequently called agents. The agents communicate and perform computation through pairwise interactions. We study fast and space efficient leader election in population of cardinality n governed by a random scheduler, where during each time step the scheduler uniformly at random selects for interaction exactly one pair of agents.We propose the first o(log 2 n)-time leader election protocol. Our solution operates in expected parallel time O(log n log log n) which is equivalent to O(n log n log log n) pairwise interactions. This is the fastest currently known leader election algorithm in which each agent utilises asymptotically optimal number of O(log log n) states. The new protocol incorporates and amalgamates successfully the power of assorted synthetic coins with variable rate phase clocks.
Abstract. In contrast to electronic computation, chemical computation is noisy and susceptible to a variety of sources of error, which has prevented the construction of robust complex systems. To be effective, chemical algorithms must be designed with an appropriate error model in mind.Here we consider the model of chemical reaction networks that preserve molecular count (population protocols), and ask whether computation can be made robust to a natural model of unintended "leak" reactions. Our definition of leak is motivated by both the particular spurious behavior seen when implementing chemical reaction networks with DNA strand displacement cascades, as well as the unavoidable side reactions in any implementation due to the basic laws of chemistry. We develop a new "Robust Detection" algorithm for the problem of fast (logarithmic time) single molecule detection, and prove that it is robust to this general model of leaks. Besides potential applications in single molecule detection, the error-correction ideas developed here might enable a new class of robustby-design chemical algorithms. Our analysis is based on a non-standard hybrid argument, combining ideas from discrete analysis of population protocols with classic Markov chain techniques.
International audienceWe consider the problem of deterministic load balancing of tokens in the discrete model. A set of n processors is connected into a d-regular undirected network. In every time step, each processor exchanges some of its tokens with each of its neighbors in the network. The goal is to minimize the discrepancy between the number of tokens on the most-loaded and the least-loaded processor as quickly as possible. Rabani et al. (1998) present a general technique for the analysis of a wide class of discrete load balancing algorithms. Their approach is to characterize the deviation between the actual loads of a discrete balancing algorithm with the distribution generated by a related Markov chain. The Markov chain can also be regarded as the underlying model of a continuous diffusion algorithm. Rabani et al. showed that after time T = O(log (Kn)/μ), any algorithm of their class achieves a discrepancy of O(d log n/μ), where μ is the spectral gap of the transition matrix of the graph, and K is the initial load discrepancy in the system.In this work we identify some natural additional conditions on deterministic balancing algorithms, resulting in a class of algorithms reaching a smaller discrepancy. This class contains well-known algorithms, e.g., the rotor-router. Specifically, we introduce the notion of cumulatively fair load-balancing algorithms where in any interval of consecutive time steps, the total number of tokens sent out over an edge by a node is the same (up to constants) for all adjacent edges. We prove that algorithms which are cumulatively fair and where every node retains a sufficient part of its load in each step, achieve a discrepancy of O(d√log n/μ ,d√n) in time O(T). We also show that in general neither of these assumptions may be omitted without increasing discrepancy. We then show by a combinatorial potential reduction argument that any cumulatively fair scheme satisfying some additional assumptions achieves a discrepancy of O(d) almost as quickly as the continuous diffusion process. This positive result applies to some of the simplest and most natural discrete load balancing schemes
We study the following scenario of online graph exploration. A team of k agents is initially located at a distinguished vertex r of an undirected graph. At every time step, each agent can traverse an edge of the graph. All vertices have unique identifiers, and upon entering a vertex, an agent obtains the list of identifiers of all its neighbors. We ask how many time steps are required to complete exploration, i.e., to make sure that every vertex has been visited by some agent. We consider two communication models: one in which all agents have global knowledge of the state of the exploration, and one in which agents may only exchange information when simultaneously located at the same vertex. As our main result, we provide the first strategy which performs exploration of a graph with n vertices at a distance of at most D from r in time O(D), using a team of agents of polynomial size k = Dn 1+ < n 2+ , for any > 0. Our strategy works in the local communication model, without knowledge of global parameters such as n or D. We also obtain almost-tight bounds on the asymptotic relation between exploration time and team size, for large k. For any constant c > 1, we show that in the global communication model, a team of k = Dn c agents can always complete exploration in D(1 + 1 c−1 + o(1)) time steps, whereas at least D(1 + 1 c − o(1)) steps are sometimes required. In the local communication model, D(1 + 2 c−1 + o(1)) steps always suffice to complete exploration, and at least D(1 + 2 c − o(1)) steps are sometimes required. This shows a clear separation between the global and local communication models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.