SUMMARYMolecular genetics approaches in zebrafish research are hampered by the lack of a ubiquitous transgene driver element that is active at all developmental stages. Here, we report the isolation and characterization of the zebrafish ubiquitin (ubi) promoter, which drives constitutive transgene expression during all developmental stages and analyzed adult organs. Notably, ubi expresses in all blood cell lineages, and we demonstrate the application of ubi-driven fluorophore transgenics in hematopoietic transplantation experiments to assess true multilineage potential of engrafted cells. We further generated transgenic zebrafish that express ubiquitous 4-hydroxytamoxifen-controlled Cre recombinase activity from a ubi:cre ERt2 transgene, as well as ubi:loxP-EGFP-loxP-mCherry (ubi:Switch) transgenics and show their use as a constitutive fluorescent lineage tracing reagent. The ubi promoter and the transgenic lines presented here thus provide a broad resource and important advancement for transgenic applications in zebrafish.
During vertebrate embryogenesis, hematopoietic stem cells (HSC) arise in the aorta-gonads-mesonephros (AGM) region. A zebrafish chemical genetic screen identified compounds that regulate blood flow as modulators of HSC formation. silent heart (sih) embryos that lack a heartbeat and blood circulation exhibited severely reduced HSCs. Blood flow modifiers exerted their effects after the onset of heartbeat; however, nitric oxide (NO) donors affected HSC induction even when treatment occurred prior to the initiation of circulation, and rescued HSCs in sih mutants. NO synthase (Nos) inhibitors and morpholino-knockdown of nos1 (nnos/enos) blocked HSC development. Embryonic transplantation assays demonstrated a cell-autonomous requirement for nos1. Nos3 (eNos) was expressed in HSCs in the murine AGM. Intrauterine Nos inhibition or Nos3 deficiency in mice resulted in the absence of hematopoietic clusters and reduced transplantable progenitors and HSCs. This work links blood flow to AGM hematopoiesis, and identifies NO as a conserved downstream regulator of HSC development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.