Endospores (i.e., bacterial spores) embedded in polar ices present an opportunity to investigate the most durable form of life in an ideal medium for maintaining long-term viability. However, little is known about the endospore distribution and viability in polar ices. We have determined germinable endospore concentrations of bacterial spores capable of germination in a Greenland ice core (GISP2 94 m, ID# G2-271) using two complementary endospore viability assays (EVA), recently developed in our laboratory. These assays are based on bulk spectroscopic analysis (i.e., spectroEVA), and direct microscopic enumeration (i.e., microEVA) of ice core concentrates. Both assays detect dipicolinic acid (DPA) release during l-alanine induced germination via terbium ion (Tb3+)-DPA luminescence. Using spectroEVA, the germinable and total bacterial spore concentrations were found to be 295+/-19 spores mL(-1) and 369+/-36 spores mL(-1), respectively, (i.e., 80% of the endospores were capable of germination). Using microEVA, the germinating endospore concentration was found to be 27+/-2 spores mL(-1). The total cell concentration, as determined by DAPI stain fluorescence microscopy, was 7.0 x 10(3)+/-6.7 x 10(2) cells mL(-1). Culturing attempts yielded 2 CFU mL(-1) (4 degrees C). We conclude that endospores capable of germination in the GISP2 ice cores are readily determined using novel endospore viability assays.
The increased demand for sterile products has created the need for rapid technologies capable of validating the hygiene of industrial production processes. Bacillus endospores are in standard use as biological indicators for evaluating the effectiveness of sterilization processes. Currently, culture-based methods, requiring more than 2 days before results become available, are employed to verify endospore inactivation. We describe a rapid, microscopy-based endospore viability assay (EVA) capable of enumerating germinable endospores in less than 15 min. EVA employs time-gated luminescence microscopy to enumerate single germinable endospores via terbium-dipicolinate (Tb-DPA) luminescence, which is triggered under UV excitation as 10 8 DPA molecules are released during germination on agarose containing Tb 3؉ and a germinant (e.g., L-alanine). Inactivation of endospore populations to sterility was monitored with EVA as a function of thermal and UV dosage. A comparison of culturing results yielded nearly identical decimal reduction values, thus validating EVA as a rapid biodosimetry method for monitoring sterilization processes. The simple Tb-DPA chemical test for germinability is envisioned to enable fully automated instrumentation for in-line monitoring of hygiene in industrial production processes.The era of modern microbiology began in the 1870s when the life cycle of an endospore-forming pathogen, Bacillus anthracis, was elucidated using new methods for isolating pure cultures from single-cell clones on solid growth media. Bacterial endospores are dormant microbial structures that are highly resistant to chemical, physical, and radiation sterilization processes (2,6,19,26). In fact, Bacillus subtilis endospores have survived for 6 years in space while exposed to highvacuum conditions, temperature extremes, and intense solar and galactic radiation (12,18). Bacterial endospores are routinely employed as biological indicators (i.e., biodosimeters) to validate the effectiveness of sterilization methods (e.g., autoclaves) used in the medical device (15, 16), pharmaceutical, health care (5), food preparation, wastewater remediation (23), and biodefense (29) industries.The effectiveness of sterilization processes is measured and reported in terms of sterility assurance levels (SALs), which are defined as the expected probability that a product remains contaminated with viable microorganisms after exposure to a validated sterilization process. A sterilization process that yields predictable SALs is considered to be validated. Confidence in achieving a required SAL is obtained by the use of biological indicators that present a considerably greater population and resistance challenge than the expected bioburden (21), and the most effective way to test the efficiency of a sterilization process is to place biological indicators within and on test products of interest.Currently, endospore inactivation is quantified by measuring the log reduction in CFU. This method, however, requires several days of incubation, during which ...
A fully automated anthrax smoke detector (ASD) has been developed and tested. The ASD is intended to serve as a cost effective front-end monitor for anthrax surveillance systems. The principle of operation is based on measuring airborne endospore concentrations, where a sharp concentration increase signals an anthrax attack. The ASD features an air sampler, a thermal lysis unit, a syringe pump, a time-gated spectrometer, and endospore detection chemistry comprised of dipicolinic acid (DPA)-triggered terbium ion (Tb(3+)) luminescence. Anthrax attacks were simulated using aerosolized Bacillus atrophaeus spores in fumed silica, and corresponding Tb-DPA intensities were monitored as a function of time and correlated to the number of airborne endospores collected. A concentration dependence of 10(2)-10(6) spores/mg of fumed silica yielded a dynamic range of 4 orders of magnitude and a limit of detection of 16 spores/L when 250 L of air were sampled. Simulated attacks were detected in less than 15 min.
This study investigates the effect of sonic stimulation on Bacillus endospore germination. Germinating endospores in a microtiter plate were exposed to audible sound wave generated by an array of piezoelectric transducers. In situ germination kinetics was measured by terbium-dipicolinate fluorescence assay, optical density measurement and phase contrast microscopy. Fluorescence results revealed that sonic stimulation (5 kHz at 90 dB) promoted the germination speed by 43.7% ± 11.3% and final germination level by 61.7% ± 11.9% of Bacillus atrophaeus. This acoustic energy absorbed by endospores is postulated to change membrane permeability and increase enzyme activities; thereby, expediting the germination process. This also raises the likelihood of dormant endospores undergoing germination because of a rapid release of unidentified chemical mediators for quorum sensing. On the other hand, acoustic effect was not observed in B. subtilis endospores. This may be attributed to the different spore aspect ratio, 1.43 ± 0.05 for B. atrophaeus and 2.02 ± 0.08 for B. subtilis, which results in a difference in specific absorption rates towards audible sound waves. Our results demonstrate the modulation of endospore germination by an external field to shed light on germination mechanism and cell-wave interaction.
Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.