SummarySOB3, which encodes a plant-specific AT-hook motif containing protein, was identified from an activationtagging screen for suppressors of the long-hypocotyl phenotype of a weak phyB allele, phyB-4. sob3-D (suppressor of phyB-4#3 dominant) overexpressing seedlings have shorter hypocotyls, and as adults develop larger flowers and leaves, and are delayed in senescence compared with wild-type plants. At the nucleotide level, SOB3 is closely related to ESCAROLA (ESC), which was identified in an independent activation-tagging screen. ESC overexpression also suppresses the phyB-4 long-hypocotyl phenotype, and confers an adult morphology similar to sob3-D, suggesting similar functions. Analysis of transgenic plants harboring SOB3:SOB3-GUS or ESC:ESC-GUS translational fusions, driven by their endogenous promoter regions, showed GUS activity in the hypocotyl and vasculature tissue in light-and dark-grown seedlings. A lossof-function SOB3 allele (sob3-4) was generated through an ethyl methanesulfonate intragenic suppressor screen of sob3-D phyB-4 plants, and this allele was combined with a predicted null allele, disrupting ESC (esc-8), to examine potential genetic interactions. The sob3-4 esc-8 double mutant had a long hypocotyl in multiple fluence rates of continuous white, far-red, red and blue light. sob3-4 esc-8 phyB-9 and sob3-4 esc-8 cry-103 triple mutants also had longer hypocotyls than photoreceptor single mutants. In contrast, the sob3-4 esc-8 phyA-211 triple mutant was the same length as phyA-211 single mutants. Taken together, these data indicate that SOB3 and ESC act redundantly to modulate hypocotyl growth inhibition in response to light.
Gibberellic acid (GA) promotes germination, stem/hypocotyl elongation, and leaf expansion during seedling development. Using activation-tagging mutagenesis, we identified a mutation, sob2-D (for suppressor of phytochromeB-4 [phyB-4]#2 dominant), which suppresses the long-hypocotyl phenotype of a phyB missense allele, phyB-4. This mutant phenotype is caused by the overexpression of an APETALA2 transcription factor, SOB2, also called DRN-like. SOB2/DRN-like transcript is not detectable in wild-type seedling or adult tissues via RT-PCR analysis, suggesting that SOB2/DRN-like may not be involved in seedling development under normal conditions. Adult sob2-D phyB-4 plants have curled leaves and club-like siliques, resembling plants that overexpress a closely related gene, LEAFY PETIOLE (LEP). Hypocotyls of a LEP-null allele, lep-1, are shorter in the light and dark, suggesting LEP involvement in seedling development. This aberrant hypocotyl phenotype is due at least in part to a delay in germination. In addition, lep-1 is less responsive to GA and more sensitive to the GA biosynthesis inhibitor paclobutrazol, indicating that LEP is a positive regulator of GA-induced germination. RT-PCR shows that LEP transcript accumulates in wild-type seeds during imbibition and germination, and the transcript levels of REPRESSOR OF ga1-3-LIKE2 (RGL2), a negative regulator of GA signaling during germination, is unaffected in lep-1. These results suggest LEP is a positive regulator of GA-induced germination acting independently of RGL2. An alternative model places LEP downstream of RGL2 in the GA-signaling cascade.
SHARP approaches financial independence and provides a cost savings to SLCH. LOS decreased by a statistically significant amount compared with GM with no change in readmission rate. Referring physician satisfaction was high, likely allowing for growth in referrals to SLCH. SHARP hospitalists' collaboration with referring physicians, ensuring excellent follow-up, provides decreased duration of hospitalization and resource utilization. Our availability throughout the day to reassess patients increases efficiency. We project that we must average 12.6 daily encounters to be financially independent.
Objective Chromovert® Technology is presented as a new cell engineering technology to detect and purify living cells based on gene expression. Methods The technology utilizes fluorogenic oligonucleotide signaling probes and flow cytometry to detect and isolate individual living cells expressing one or more transfected or endogenously-expressed genes. Results Results for production of cell lines expressing a diversity of ion channel and membrane proteins are presented, including heteromultimeric epithelial sodium channel (αβγ-ENaC), sodium voltage-gated ion channel 1.7 (NaV1.7-αβ1β2), four unique γ-aminobutyric acid A (GABA A ) receptor ion channel subunit combinations α1β3γ2s, α2β3γ2s, α3β3γ2s and α5β3γ2s, cystic fibrosis conductance regulator (CFTR), CFTR-Δ508 and two G-protein coupled receptors (GPCRs) without reliance on leader sequences and/or chaperones. In addition, three novel plasmid-encoded sequences used to introduce 3′ untranslated RNA sequence tags in mRNA expression products and differentially-detectable fluorogenic probes directed to each are described. The tags and corresponding fluorogenic signaling probes streamline the process by enabling the multiplexed detection and isolation of cells expressing one or more genes without the need for gene-specific probes. Conclusions Chromovert technology is provided as a research tool for use to enrich and isolate cells engineered to express one or more desired genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.