This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a highresolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO 2 , NO x , and CO 2 , respectively, and decreased by 23 and 27 % for PM 2.5 and PM 10 respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close exami-nation of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.
Errors in chemical transport models (CTMs) interpreting the relation between space-retrieved tropospheric column densities of nitrogen dioxide (NO<sub>2</sub>) and emissions of nitrogen oxides (NO<sub>x</sub>) have important consequences on the inverse modeling. They are however difficult to quantify due to lack of adequate in situ measurements, particularly over China and other developing countries. This study proposes an alternate approach for model evaluation over East China, by analyzing the sensitivity of modeled NO<sub>2</sub> columns to errors in meteorological and chemical parameters/processes important to the nitrogen abundance. As a demonstration, it evaluates the nested version of GEOS-Chem driven by the GEOS-5 meteorology and the INTEX-B anthropogenic emissions and used with retrievals from the Ozone Monitoring Instrument (OMI) to constrain emissions of NO<sub>x</sub>. The CTM has been used extensively for such applications. Errors are examined for a comprehensive set of meteorological and chemical parameters using measurements and/or uncertainty analysis based on current knowledge. Results are exploited then for sensitivity simulations perturbing the respective parameters, as the basis of the following post-model linearized and localized first-order modification. It is found that the model meteorology likely contains errors of various magnitudes in cloud optical depth, air temperature, water vapor, boundary layer height and many other parameters. Model errors also exist in gaseous and heterogeneous reactions, aerosol optical properties and emissions of non-nitrogen species affecting the nitrogen chemistry. Modifications accounting for quantified errors in 10 selected parameters increase the NO<sub>2</sub> columns in most areas with an average positive impact of 18% in July and 8% in January, the most important factor being modified uptake of the hydroperoxyl radical (HO<sub>2</sub>) on aerosols. This suggests a possible systematic model bias such that the top-down emissions will be overestimated by the same magnitude if the model is used for emission inversion without corrections. The modifications however cannot eliminate the large model underestimates in cities and other extremely polluted areas (particularly in the north) as compared to satellite retrievals, likely pointing to underestimates of the a priori emission inventory in these places with important implications for understanding of atmospheric chemistry and air quality. Note that these modifications are simplified and should be interpreted with caution for error apportionment
Abstract. Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.
Abstract. Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM 2.5 ) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short-and long-term exposure to PM 2.5 at local-toglobal scales, but there are limitations and outstanding questions about the accuracy and precision with which groundlevel aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM 2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM 2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM 2.5 and PM 10 , are highly autonomous. Hourly PM 2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, watersoluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM 2.5 estimates used for assessing the health effects of aerosols. Mean PM 2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM 2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.
Abstract. Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of global regions, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by an order of magnitude. Initial measurements indicate that the AOD column to PM2.5 ratio is driven temporally primarily by the vertical profile of aerosol scattering; and spatially by a~ more complex interaction of the aerosol scattering vertical profile and by the mass scattering efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.