Ventilation and heating can be necessary for pig production during winter in China. However, it is challenging to balance the ventilation rate and heat loss due to the ventilation. Therefore, it is essential to design the minimum ventilation and heating load properly in order to reduce energy loss. In this paper, a VBA (Visual Basic for Applications) model based on energy balance is established. Meteorological data, pig body masses, outdoor temperatures, feeding densities, and building envelope thermal insulance factors were involved in the model. A model pig house with a length and width of 110 m × 15 m was used to investigate the ventilation, heating time, load, and power consumption in different climate zones, i.e., Changchun, Beijing, Nanning, Wuhan, and Guiyang, representing five major climate regions in China. Based on the simulation results, the models of minimum ventilation and heating load were fitted. The results showed that there is a logarithmic relationship between the minimum ventilation volume and body mass, R2 = 0.9673. The R2 of heating load models for nursery pigs and fattening pigs were 0.966 and 0.963, respectively, considering the feeding area, the outside temperature, the body masses of the nursery and fattening pigs, and the thermal insulance factor of the enclosure. The heating requirements of commercial pig houses within the same building envelope followed the trend in Changchun > Beijing > Guiyang > Wuhan > Nanning. Increasing the building envelope’s thermal insulance factor or using precision heating could reduce the pig house’s power consumption. The analysis of the heating load and energy consumption of winter pig houses in various climate regions provided a reference for precise environmental control and the selection of building thermal insulance factors in China.
The environment in livestock and poultry houses plays an important role in the growth and reproduction of livestock and poultry. In order to obtain the environmental conditions of livestock and poultry houses in a timely and reliable manner, and eliminate adverse environmental factors, scholars have been exploring various methods to obtain and predict environmental factors. This paper reviewed the literature from the last 10 years, specifically focusing on technologies for detecting environmental factors in livestock and poultry houses, which can be mainly divided into three categories: research on the environmental monitoring and control of livestock and poultry houses based on detection equipment and wireless sensor technology; research on the distribution and regularity of environmental factors in livestock and poultry houses based on a mathematical model; research on the environmental simulation and detection of livestock and poultry houses based on computer technology. The current testing methods have their advantages and disadvantages. When studying environmental factors, researchers should choose the most appropriate method for data acquisition according to the actual situation. The proposed recommendations for achieving this goal are as follows: (1) The control of environmental factors should be combined with the physiological response of livestock and poultry. The needs of animals should be considered; (2) Novel approaches need to be developed to integrate energy requirements into the environmental regulation of livestock and poultry houses; (3) It is necessary to research and develop control models and strategies that can predict the environment in the houses, and the transient simulation method should be further explored; (4) Improve environmental detection and control accuracy through the coupling of different technologies.
Abstract. China's traditional architecture has a history of thousands of years, after continuous development and evolution, which has built a complete building system. In the composition factors of Chinese traditional architecture, color factors with a unique combination occupy an important position, and contain a wealth of traditional culture, which is a common inheritance of traditional architectural concepts. Chinese traditional architectural color has a certain practicality, but also shows strong romantic characteristics. This paper makes a brief introduction to the color of Chinese traditional architecture, and then deeply analyzes the romantic thinking in Chinese traditional architectural color.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.