Highly reactive metastable intermixed composites (MICs) have attracted much attention in the past decades. The MIC family of materials mainly includes traditional metal-based nanothermites, novel core-shell-structured, 3D ordered macroporous-structured, and ternary nanocomposites. By applying special fabrication approaches, highly reactive MICs with uniformly dispersed reactants, "layer-by-layer" or "core-shell" structures, can be prepared. Thus, the combustion performance can be greatly improved, and the ignition characteristics and safety can be precisely controlled by using a certain preparation strategy. Here, the preparation and characterization of the MICs that have been developed during the past few decades are summarized. Traditional preparation methods for MICs generally include physical mixing, high-energy ball milling, sol-gel synthesis, and vapor deposition, while the novel methods include self-assembly, electrophoretic deposition, and electrospinning. Various preparation procedures and the ignition and combustion performance of different MIC reactive systems are compared and discussed. In particular, the advantages of novel structured MICs in terms of safety and combustion efficiency are clarified, based on which suggestions regarding the possible future research directions are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.