The challenges of developing neuromorphic vision systems inspired by the human eye come not only from how to recreate the flexibility, sophistication, and adaptability of animal systems, but also how to do so with computational efficiency and elegance. Similar to biological systems, these neuromorphic circuits integrate functions of image sensing, memory and processing into the device, and process continuous analog brightness signal in real-time. High-integration, flexibility and ultra-sensitivity are essential for practical artificial vision systems that attempt to emulate biological processing. Here, we present a flexible optoelectronic sensor array of 1024 pixels using a combination of carbon nanotubes and perovskite quantum dots as active materials for an efficient neuromorphic vision system. The device has an extraordinary sensitivity to light with a responsivity of 5.1 × 107 A/W and a specific detectivity of 2 × 1016 Jones, and demonstrates neuromorphic reinforcement learning by training the sensor array with a weak light pulse of 1 μW/cm2.
Since its invention in the 1960s, one of the most significant evolutions of metal-oxidesemiconductor field effect transistors (MOS-FETs) would be the three dimensionalized version that makes the semiconducting channel vertically wrapped by conformal gate electrodes, also recognized as FinFET. During the past decades, the width of fin (W fin ) in FinFETs has shrunk from about 150 nm to a few nanometers. However, W fin seems to have been levelling off in recent years, owing to the limitation of lithography precision. Here, we show that by adapting a template-growth method, different types of mono-layered two-dimensional crystals are isolated in a vertical manner. Based on this, FinFETs with one atomic layer fin are obtained, with on/off ratios reaching $10 7 . Our findings push the FinFET to the sub 1 nm fin-width limit, and may shed light on the next generation nanoelectronics for higher integration and lower power consumption.
Single-wall carbon nanotubes (SWCNTs), especially in the form of large-area and high-quality thin films, are a promising material for use in flexible and transparent electronics. Here, a continuous synthesis, deposition, and transfer technique is reported for the fabrication of meter-scale SWCNT thin films, which have an excellent optoelectrical performance including a low sheet resistance of 65 Ω/◽ with a transmittance of 90% at a wavelength of 550 nm. Using these SWCNT thin films, high-performance all-CNT thin-film transistors and integrated circuits are demonstrated, including 101-stage ring oscillators. The results pave the way for the future development of large-scale, flexible, and transparent electronics based on CNT thin films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.