BackgroundCircular RNAs(circRNAs) have been reported as a diverse class of endogenous RNA that regulate gene expression in eukaryotes. Recent evidence suggested that many circular RNAs can act as oncogenes or tumor suppressors through sponging microRNAs. However, the function of circular RNAs in gastric cancer remains largely unknown.Materials and methodsThe circRNA levels in gastric carcinoma tissues and plasmas were detected by real-time quantitative reverse transcription-polymerase chain reaction. The correlation between the expression of circRNA and clinic pathological features was analyzed. Rate of inhibiting of proliferation was measured using a CCK-8 cell proliferation assay. Clone formation ability was assessed with a clone formation inhibition test. We used the bioinformatics software to predict circRNA-miRNA and miRNA-mRNA interactions. Relative gene expression was assessed using quantitative real-time polymerase chain reaction and relative protein expression levels were determined with western blotting. CircRNA and miRNA interaction was confirmed by dual-luciferase reporter assays.ResultsWe characterized that one circRNA named circ-SFMBT2 showed an increased expression level in gastric cancer tissues compared to adjacent non-cancerous tissues and was associated with higher tumor stages of gastric cancer. Silencing of circ-SFMBT2 inhibited the proliferation of gastric cancer cells significantly. Importantly, we demonstrated that circ-SFMBT2 could act as a sponge of miR-182-5p to regulate the expression of CREB1 mRNA, named as cAMP response element binding protein 1, and further promote the proliferation of gastric cancer cells.ConclusionOur study reveals that circ-SFMBT2 participates in progression of gastric cancer by competitively sharing miR-182-5p with CREB1, providing a novel target to improve the treatment of gastric cancer. mutation-analysis-of-beta-thalassemia-in-east-western-indian-populatio-peer-reviewed-article-TACG for an example.
The kidney renal clear cell carcinoma (KIRC) with poor prognosis is the main histological subtype of the renal cell carcinoma, accounting for 80–90% of patients. Currently, the N6-methyladenosine (m6A) epitranscriptional modification draws much attention. The m6A RNA modification, the most plentiful internal modification of mRNAs and noncoding RNAs in the majority of eukaryotes, regulates mRNAs at different levels and is involved in disease occurrence and progression. The GTExPortal and TCGAportal were applied to investigate the METTL14 mRNA expression in different tissues and KIRC stages. The Human Protein Atlas was used to verify the location of METTL14 in KIRC tissues. The main microRNAs (miRNAs) related to KIRC were analyzed using OncoLnc and starBase, while corresponding circular RNAs (circRNAs) interacting with miRNAs were predicted via circBank; then, the METTL14-miRNA-circRNA interaction network was established. The level of methyltransferase-like 14 (METTL14) mRNA was significantly lower in KIRC tissues compared with normal kidney tissues, which was relative to clinical and pathological stages. circRNAs may regulate METTL14 mRNA as miRNAs sponge to affect the KIRC progression. METTL14 mRNA is likely to regulate PTEN mRNA expression via changing its m6A RNA modification level. METTL14 mRNA expression negatively correlated with the KIRC stages and positively correlated with KIRC patients’ overall survival, which has great potential to serve as a clinical biomarker in KIRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.