Recently, cardiovascular disease (CVD) has become one of the leading death causes worldwide, and it contributes to 41% of all deaths each year in China. This disease incurs a cost of more than 400 billion US dollars in China on the healthcare expenditures and lost productivity during the past ten years. It has been shown that the CVD can be effectively prevented by an interdisciplinary approach that leverages the technology development in both IT and electrocardiogram (ECG) fields. In this paper, we present WE-CARE , an intelligent telecardiology system using mobile 7-lead ECG devices. Because of its improved mobility result from wearable and mobile ECG devices, the WE-CARE system has a wider variety of applications than existing resting ECG systems that reside in hospitals. Meanwhile, it meets the requirement of dynamic ECG systems for mobile users in terms of the detection accuracy and latency. We carried out clinical trials by deploying the WE-CARE systems at Peking University Hospital. The clinical results clearly showed that our solution achieves a high detection rate of over 95% against common types of anomalies in ECG, while it only incurs a small detection latency around one second, both of which meet the criteria of real-time medical diagnosis. As demonstrated by the clinical results, the WE-CARE system is a useful and efficient mHealth (mobile health) tool for the cardiovascular disease diagnosis and treatment in medical platforms.
With the development of 5G and the Internet of Things (IoT), mobile terminals are widely used in various applications under multicast scenarios. However, due to the limited computation resources of mobile terminals, reducing the computation cost of members in group key distribution processes of dynamic groups has become an important issue. In this paper, we propose a computation-efficient group key distribution (CEGKD) protocol. First, an improved secret sharing scheme is proposed to construct faster encryption and decryption algorithms. Second, the tree structure of logical key hierarchy (LKH) is employed to implement a simple and effective key-numbering method. Theoretical analysis is given to prove that the proposed protocol meets forward security and backward security. In addition, the experiment results show that the computation cost of CEGKD on the member side is reduced by more than 85% compared with that of the LKH scheme.
The abnormal activity detection in smart environments has experienced increasing attention over years, due to its usefulness in pervasive applications. In order to meet the real-time needs and overcome the high costs and privacy issues, this paper proposes distributed abnormal activity detection approach (DetectingAct), which employs the computing and storage resources of simple and ubiquitous sensor nodes, to detect abnormal activity in smart environments equipped with wireless sensor networks (WSN). In DetectingAct, activity is defined as the combination of trajectory and duration, and abnormal activity is defined as the activity which deviates greater enough from those normal activities. DetectingAct works as follows. Firstly, DetectingAct finds the normal activity patterns through duration-dependent frequent pattern mining algorithm (DFPMA), which adopts unsupervised learning instead of supervised learning. Secondly, the distributed knowledge storage mechanism (DKSM) is introduced to store the mined patterns in each node. Then, the current triggered sensor adopts distributed abnormal activity detection algorithm (DAADA), in which the clustering analysis plays a critical role, to compare the present activity with normal activity patterns, by calculating the similarity between them. The feasibility, real-time property, and accuracy of the DetectingAct algorithm are evaluated using both simulation and real experiments case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.