Submerged arc additive manufacturing (SAAM) is a viable technique for manufacturing large and complex specialized parts used in structural applications. At present, manufacturing high-strength low-alloy steel T-branch pipe through SAAM has not been reported. This paper uses this technology to manufacture low-alloy structural steel parts. The microstructures of the samples were characterized, which revealed that they were mainly composed of polygonal ferrites. The tensile properties in the horizontal and vertical directions of deposits were studied. Results show that the horizontal tensile strength of deposits was quite close to the vertical one, while the elongation rate in the vertical direction was obviously lower than that in the horizontal direction. Fatigue results indicate that the strain fatigue limit of high-strength low-alloy steel samples in vertical direction was 0.24%. The fatigue fractures of fatigue samples of deposits showed multi-source crack initiation characteristics and the crack propagation regions exhibited typical fatigue striations, so the final instantaneous fracture region showed a ductile fracture. Fatigue performance is very important for the safe service of structural parts, but there is a lack of relevant research on this additive manufacturing part. The results of this paper may support the popularization of the SAAM for high-strength low-alloy steel T-branch pipe.
The hot deformation characteristics of Nickel-based corrosion resistant alloy was studied in the temperature range of 1050˜1200oC and the strain rate range of 0.001˜0.1s-1 by employing hot compression tests. The results show that the peak stress increases with decreasing temperature and increasing strain rate, and the activation energy is about 409kJ/mol. Basing on the Avrami equation through using the critical strain (εc) and the strain for 50% DRX (ε0.5), a kinetic model for dynamic recrystallization (DRX) was established, where the model parameters could be obtained using the modified Zener-Hollomon parameter (Z*). Applying the model, the predicted value of the steady state strain (εss) and the strain for maximum softening rate (εm) agree well with the experimental results. Accordingly, the relationship between ε m and ε 0.5 is established, which is mainly dependent on the Avrami exponent (n). When n <3.25, εm becomes less than ε0.5 and the difference in between decreases with increasing the strain rate or decreasing the deformation temperature. Finally, through observing DRX microstructure under different deformation conditions, a power law relation between DRX grain size (Ddrx) and Z*, with an exponent of-0.36, was found.
Due to the wide application of flux-cored arc welds (FCAW) susceptible to significant scatter in weld and Heat Affected Zone (HAZ) fracture toughness, there is an interest in methods for evaluating the reliability of welds containing defects. The mechanical properties of the FCAW girth weld of an X80 pipeline are tested and then analyzed. By obtaining fracture toughness results from a statistically significant number of SENB specimens, with notches positioned in different HAZ locations, the effect of variation within the results can be evaluated. The results of the fracture toughness tests were analyzed using statistical methods, to compare both the difference in behavior between HAZ microstructures and the variation when a similar microstructure has been sampled. The range of different characteristic toughness values was analyzed using a postulated ECA case to illustrate the sensitivity of the results to how toughness is defined. The analyses supported recommendations to be made on the optimum approach to characterizing HAZ fracture toughness for reliable pipeline assessments in multi-pass girth welds with complex HAZ microstructure distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.