HighlightsThis work presents the methodologies and evaluation results for the WHS algorithms selected from the submissions to the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, in conjunction with MICCAI 2017.This work introduces the related information to the challenge, discusses the results from the conventional methods and deep learning-based algorithms, and provides insights to the future research.The challenge provides a fair and intuitive comparison framework for methods developed and being developed for WHS.The challenge provides the training datasets with manually delineated ground truths and evaluation for an ongoing development of MM-WHS algorithms.
This is a repository copy of A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging.
Haptic-based tissue stiffness perception is essential for palpation training system, which can provide the surgeon haptic cues for improving the diagnostic abilities. However, current haptic devices, such as Geomagic Touch, fail to provide immersive and natural haptic interaction in virtual surgery due to the inherent mechanical friction, inertia, limited workspace and flawed haptic feedback. To tackle this issue, we design a novel magnetic levitation haptic device based on electromagnetic principles to augment the tissue stiffness perception in virtual environment. Users can naturally interact with the virtual tissue by tracking the motion of magnetic stylus using stereoscopic vision so that they can accurately sense the stiffness by the magnetic stylus, which moves in the magnetic field generated by our device. We propose the idea that the effective magnetic field (EMF) is closely related to the coil attitude for the first time. To fully harness the magnetic field and flexibly generate the specific magnetic field for obtaining required haptic perception, we adopt probability clouds to describe the requirement of interactive applications and put forward an algorithm to calculate the best coil attitude. Moreover, we design a control interface circuit and present a self-adaptive fuzzy proportion integration differentiation (PID) algorithm to precisely control the coil current. We evaluate our haptic device via a series of quantitative experiments which show the high consistency of the experimental and simulated magnetic flux density, the high accuracy (0.28 mm) of real-time 3D positioning and tracking of the magnetic stylus, the low power consumption of the adjustable coil configuration, and the tissue stiffness perception accuracy improvement by 2.38 percent with the self-adaptive fuzzy PID algorithm. We conduct a user study with 22 participants, and the results suggest most of the users can clearly and immersively perceive different tissue stiffness and easily detect the tissue abnormality. Experimental results demonstrate that our magnetic levitation haptic device can provide accurate tissue stiffness perception augmentation with natural and immersive haptic interaction.
As a result of long-term pressure from train operations and direct exposure to the natural environment, rails, fasteners, and other components of railway track lines inevitably produce defects, which have a direct impact on the safety of train operations. In this study, a multiobject detection method based on deep convolutional neural network that can achieve nondestructive detection of rail surface and fastener defects is proposed. First, rails and fasteners on the railway track image are localized by the improved YOLOv5 framework. Then, the defect detection model based on Mask R-CNN is utilized to detect the surface defects of the rail and segment the defect area. Finally, the model based on ResNet framework is used to classify the state of the fasteners. To verify the robustness and effectiveness of our proposed method, we conduct experimental tests using the ballast and ballastless railway track images collected from Shijiazhuang-Taiyuan high-speed railway line. Through a variety of evaluation indexes to compare with other methods using deep learning algorithms, experimental results show that our method outperforms others in all stages and enables effective detection of rail surface and fasteners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.