Detection of biomarkers in complex samples is a significant health plan strategy for medical diagnosis, therapy monitoring, and health management. However, high background noise resulting from impurities and other analytes in complex samples has hampered the improvement of detection sensitivity and accuracy. Herein, an ultralow background biochip based on time-gated luminescent probes supported by photonic crystals (PCs) was successfully developed for detection of bladder cancer (BC)-related miRNA biomarkers with high sensitivity and specificity in urine samples. Coupled with the time-gated luminescence of long-lifetime luminescence probes and the luminescenceenhanced capability of PCs, the short-lived autofluorescence can be efficiently removed; thus, the detection sensitivity will be significantly improved. Benefiting from these merits, a detection limit of 26.3 fM is achieved. Furthermore, the biochip exhibits excellent performance in urinary miRNA detection, and good recoveries are also obtained. The developed biochip possesses unique properties of ultralow background and luminescence enhancement, thus offering a suitable tool for the detection of BC-related miRNA in urine. With rational design of probe sequences, the biochip holds great potential for many other biomarkers in real patient samples, making it valuable in areas such as medical diagnosis and disease evaluation.
This article introduces the construction of low energy-excited persistent luminescence nanoparticles by electronic structure engineering, and their applications in biomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.