Motivation Identifying drug–target interactions (DTIs) is a crucial step in drug repurposing and drug discovery. Accurately identifying DTIs in silico can significantly shorten development time and reduce costs. Recently, many sequence-based methods are proposed for DTI prediction and improve performance by introducing the attention mechanism. However, these methods only model single non-covalent inter-molecular interactions among drugs and proteins and ignore the complex interaction between atoms and amino acids. Results In this paper, we propose an end-to-end bio-inspired model based on the convolutional neural network (CNN) and attention mechanism, named HyperAttentionDTI, for predicting DTIs. We use deep CNNs to learn the feature matrices of drugs and proteins. To model complex non-covalent inter-molecular interactions among atoms and amino acids, we utilize the attention mechanism on the feature matrices and assign an attention vector to each atom or amino acid. We evaluate HpyerAttentionDTI on three benchmark datasets and the results show that our model achieves significantly improved performance compared to the state-of-the-art baselines. Moreover, a case study on the human Gamma-aminobutyric acid receptors confirm that our model can be used as a powerful tool to predict DTIs. Availability The codes of our model are available at https://github.com/zhaoqichang/HpyerAttentionDTI and https://zenodo.org/record/5039589. Supplementary information Supplementary data are available at Bioinformatics online.
With the development of high-throughput technology and the accumulation of biomedical data, the prior information of biological entity can be calculated from different aspects. Specifically, drug–drug similarities can be measured from target profiles, drug–drug interaction and side effects. Similarly, different methods and data sources to calculate disease ontology can result in multiple measures of pairwise disease similarities. Therefore, in computational drug repositioning, developing a dynamic method to optimize the fusion process of multiple similarities is a crucial and challenging task. In this study, we propose a multi-similarities bilinear matrix factorization (MSBMF) method to predict promising drug-associated indications for existing and novel drugs. Instead of fusing multiple similarities into a single similarity matrix, we concatenate these similarity matrices of drug and disease, respectively. Applying matrix factorization methods, we decompose the drug–disease association matrix into a drug-feature matrix and a disease-feature matrix. At the same time, using these feature matrices as basis, we extract effective latent features representing the drug and disease similarity matrices to infer missing drug–disease associations. Moreover, these two factored matrices are constrained by non-negative factorization to ensure that the completed drug–disease association matrix is biologically interpretable. In addition, we numerically solve the MSBMF model by an efficient alternating direction method of multipliers algorithm. The computational experiment results show that MSBMF obtains higher prediction accuracy than the state-of-the-art drug repositioning methods in cross-validation experiments. Case studies also demonstrate the effectiveness of our proposed method in practical applications. Availability: The data and code of MSBMF are freely available at https://github.com/BioinformaticsCSU/MSBMF. Corresponding author: Jianxin Wang, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, P. R. China. E-mail: jxwang@mail.csu.edu.cn Supplementary Data: Supplementary data are available online at https://academic.oup.com/bib.
Motivation Identifying drug-target interactions is a crucial step for drug discovery and design. Traditional biochemical experiments are credible to accurately validate drug-target interactions. However, they are also extremely laborious, time-consuming, and expensive. With the collection of more validated biomedical data and the advancement of computing technology, the computational methods based on chemogenomics gradually attract more attention, which guide the experimental verifications. Results In this study, we propose an end-to-end deep learning-based method named IIFDTI to predict DTIs based on independent features of drug-target pairs and interactive features of their substructures. First, the interactive features of substructures between drugs and targets are extracted by the bidirectional encoder-decoder architecture. The independent features of drugs and targets are extracted by the graph neural networks and convolutional neural networks, respectively. Then, all extracted features are fused and inputted into fully connected dense layers in downstream tasks for predicting DTIs. IIFDTI takes into account the independent features of drugs/targets and simulates the interactive features of the substructures from the biological perspective. Multiple experiments show that IIFDTI outperforms the state-of-the-art methods in terms of AUC, AUPR, precision, and recall on benchmark datasets. In addition, the mapped visualizations of attention weights indicate that IIFDTI has learned the biological knowledge insights, and two case studies illustrate the capabilities of IIFDTI in practical applications. Availability and implementation The codes of IIFDTI are available at https://github.com/czjczj/IIFDTI. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.