Frog skin secretions contain complex peptidomes and peptidic protease inhibitors that are one of the biologically and structurally described groups of components. In the present study, by use of molecular ‘shotgun’ cloning and LC MS/MS fractionation sequencing, a novel Bowman–Birk-type heptadecapeptide (AALKGCWTKSIPPKPCF-amide), named Odorrana schmackeri Trypsin Inhibitor (OSTI), with a canonical Cys6–Cys16 disulfide bridge, was isolated and identified in piebald odorous frog (O. schmackeri) skin secretion. A synthetic replicate of OSTI-exhibited trypsin inhibitory activity with a Ki value of 0.3 ± 0.04 nM and also a tryptase inhibitory effect with a Ki of 2.5 ± 0.6 μM. This is the first time that this property has been reported for a peptide originating from amphibian sources. In addition, substituting lysine (K) with phenylalanine (F) at the presumed P1 position, completely abrogated the trypsin and tryptase inhibition, but produced a strong chymotrypsin inhibition with a Ki of 1.0 ± 0.1 μM. Thus, the specificity of this peptidic protease inhibitor could be optimized through modifying the amino acid residue at the presumed P1 position and this novel native OSTI, along with its analogue, [Phe9]-OSTI, have expanded the potential drug discovery and development pipeline directed towards alleviation of serine protease-mediated pathologies.
Antimicrobial peptides (AMPs) are regarded as promising alternatives for antibiotics due to their inherent capacity to prevent microbial drug resistance. Amphibians are rich source of bioactive molecules, which provide numerous AMPs with various structures as drug candidates. Here, we isolated and identified a novel AMP Brevinin-2Ta (B-2Ta) from the skin secretion of the European frog, Pelophylax kl. esculentus. In vitro studies revealed that it showed broad antimicrobial activities against S. aureus, E. coli and C. albicans with low cytotoxicity to erythrocytes. Furthermore, we examined the anti-inflammation effect in vivo by using Klebsiella pneumoniae-infected Sprague-Dawley (SD) rats. The wound closure outcomes revealed that B-2Ta effectively restrained the bacterial infection at a dose of 10 times minimal inhibitory concentration (MIC) during the 14 days of the wound healing process. Ultra-structure analyses showed that B-2Ta caused structural damage to the microorganism, and bacterial culture found that the number of microbes was significantly reduced by the end of treatment. Immunohistochemistry for the inflammatory marker IL-10 and the endothelial cell marker CD31 suggested positive effects on inflammatory status and epithelial migration and angiogenesis following treatment of the infected granulation tissues with B-2Ta. These results exhibited the continuous phase of inflammation reduction and wound healing acceleration in the B-2Ta-modulated re-epithelialisation of K. pneumoniae infected rats. Taken together, these data demonstrated that B-2Ta has great potential to be developed as antibacterial agents in clinic.
Antimicrobial peptides (AMP) secreted by the granular glands of frog skin have been widely reported to exhibit strong bacteriostatic and bactericidal activities. Many of them have been documented with potent antiproliferative effects on multiple cancer cells, many studies also suggested that AMPs exert their functions via disrupting cell membranes. However, whether and how other cell death induction mechanism is involved in mammalian cancer cells has rarely been investigated. In this study, a novel AMP named Dermaseptin‐PS1 was isolated and identified from Phyllomedusa sauvagei, it showed strong antimicrobial activities against three types of microorganisms. In vitro antiproliferative studies on human glioblastoma U‐251 MG cells indicated that Dermaseptin‐PS1 disrupted cell membranes at the concentrations of 10−5 M and above, while the cell membrane integrity was not affected when concentrations were decreased to 10−6 M or lower. Further examinations revealed that, at the relatively low concentration (10−6 M), Dermaseptin‐PS1 induced apoptosis through mitochondrial‐related signal pathway in U‐251 MG cells. Thus, for the first time, we report a novel frog skin derived AMP with anticancer property by distinct mechanisms, which largely depends on its concentration. Together, our study provides new insights into the mechanism‐illustrated drug design and the optimisation of dose control for cancer treatment in clinic.
Genomic integrity is continuously threatened by thousands of endogenous and exogenous damaging factors. To preserve genome stability, cells developed comprehensive DNA damage response (DDR) pathways that mediate the recognition of damaged DNA lesions, the activation of signaling cascades, and the execution of DNA repair. Transcription has been understood to pose a threat to genome stability in the presence of DNA breaks. Interestingly, accumulating evidence in recent years shows that the transient transcriptional activation at DNA double-strand break (DSB) sites is required for efficient repair, while the rest of the genome exhibits temporary transcription silencing. This genomic shut down is a result of multiple signaling cascades involved in the maintenance of DNA/RNA homeostasis, chromatin stability, and genome fidelity. The regulation of transcription of protein-coding genes and non-coding RNAs has been extensively studied; however, the exact regulatory mechanisms of transcription at DSBs remain enigmatic. These complex processes involve many players such as transcription-associated protein complexes, including kinases, transcription factors, chromatin remodeling complexes, and helicases. The damage-derived transcripts themselves also play an essential role in DDR regulation. In this review, we summarize the current findings on the regulation of transcription at DSBs and discussed the roles of various accessory proteins in these processes and consequently in DDR.
Insulin, as one of the most important hormones regulating energy metabolism, plays an essential role in maintaining glucose and lipid homeostasis in vivo. Failure or insufficiency of insulin secretion from pancreatic beta‐cells increases glucose and free fatty acid level in circulation and subsequently contributes to the emergence of hyperglycaemia and dyslipidaemia. Therefore, stimulating the insulin release benefits the treatment of type 2 diabetes and obesity significantly. Frog skin peptides have been extensively studied for their biological functions, among which, Phylloseptin peptides discovered in Phyllomedusinae frogs have been found to exert antimicrobial, antiproliferative and insulinotropic activities, while the mechanism associated with Phylloseptin‐induced insulin secretion remains elusive. In this study, we reported a novel peptide named Phylloseptin‐PBu, isolated and identified from Phyllomedusa burmeisteri, exhibited dose‐dependent insulinotropic property in rat pancreatic beta BRIN‐BD11 cells without altering cell membrane integrity. Further mechanism investigations revealed that Phylloseptin‐PBu‐induced insulin output is predominantly modulated by KATP‐[K+] channel depolarization triggered extracellular calcium influx and GLP‐1 receptor initiated PKA signalling activation. Overall, our study highlighted that this novel Phylloseptin‐PBu peptide has clear potential to be developed as a potent antidiabetic agent with established function‐traced mechanism and low risk of cytotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.