Homo-and heterodimerization of the opioid receptors with functional consequences were reported previously. However, the exact nature of these putative dimers has not been identified. In current studies, the nature of the heterodimers was investigated by producing the phenotypes of the 1:1 heterodimers formed between the constitutively expressed -opioid receptor (MOR) and the ponasterone A-induced expression of ␦-opioid receptor (DOR) in EcR293 cells. By examining the trafficking of the cell surface-located MOR and DOR, we determined that these two receptors endocytosed independently. Using cell surface expression-deficient mutants of MOR and DOR, we observed that the corresponding wild types of these receptors could not rescue the cell surface expression of the mutants, whereas the antagonist naloxone could. Furthermore, studies with constitutive or agonist-induced receptor internalization also indicated that MOR and DOR endocytosed independently and could not "drag in" the corresponding wild types or endocytosis-deficient mutants. Additionally, the heterodimer phenotypes could be eliminated by the pretreatment of the EcR293 cells with pertussis toxin and could be modulated by the deletion of the RRITR sequence in the third intracellular loop that is involved in the receptor-G protein interaction and activation. These data suggest that MOR and DOR heterodimerize only at the cell surface and that the oligomers of opioid receptors and heterotrimeric G protein are the bases for the observed MOR-DOR heterodimer phenotypes.The ability of G protein-coupled receptors (GPCRs) 1 to homoor heterodimerize has implications in the functions of the receptors. Dimerization of the receptors has been reported for the class A GPCRs such as the adenosine (1), adrenergic (2-5), angiotensin (6), dopamine (7,8), muscarinic (9), vasopressin (2, 10), and opioid (11-15) receptors and the class C GPCRs such as the calcium-sensing (16), the metaboropic glutamate receptors (17), and the ␥-amino-n-butyric acid type B (GABA B ) receptors (18 -20). The homo-and heterodimerization of these receptors have been demonstrated by co-immunoprecipitation experiments (11, 21) and subsequently by the fluorescence resonance energy transfer or bioluminescence resonance energy transfer techniques (3,12,23). The heterodimerization of the GPCRs was shown to be selective, with formation of heterodimers with some but not all subtypes of the receptors (13, 24, 25). Most importantly, there are functional differences between the monomers and the homo-and heterodimers of the GPCRs. The classic example is the inability of individual GABA B1 and GABA B2 subunit to form a functional receptor (18 -20). Alteration in the GPCR function or expression was also observed with the heterodimerization of 5HT1B and -1D (26), dopamine D1 and adenosine A1 (27), muscarinic M2 and M3 (28), or dopamine and somatostatin (29) receptors. Heterooligomerization of the GPCRs with other receptor types, such as the ionotropic GABA A receptor, has been observed, resulting in the alteration ...
Aberrant DNA methylation has been observed in the patients with Alzheimer’s disease (AD), a common neurodegenerative disorder in the elderly. OPRD1 encodes the delta opioid receptor, a member of the opioid family of G-protein-coupled receptors. In the current study, we compare the DNA methylation levels of OPRD1 promoter CpG sites (CpG1, CpG2, and CpG3) between 51 AD cases and 63 controls using the bisulfite pyrosequencing technology. Our results show that significantly higher CpG3 methylation is found in AD cases than controls. Significant associations are found between several biochemical parameters (including HDL-C and ALP) and CpG3 methylation. Subsequent luciferase reporter gene assay shows that DNA fragment containing the three OPRD1 promoter CpGs is able to regulate gene expression. In summary, our results suggest that OPRD1 promoter hypermethylation is associated with the risk of AD.
A high co-morbidity between Alzheimer's disease (AD) and depression suggests there might be similar mechanisms underlying the course of these diseases. Previous studies have shown that p38MAPK plays a critical role in the pathophysiology of AD and depression. However, little is known about whether SB203580, a selective inhibitor of p38MAPK, may protect against AD-associated cognitive impairments and depression-like behavior, simultaneously. Herein, we have shown, for the first time, that SB203580 may reverse memory impairments and depression-like behavior induced by hippocampal infusion of β-amyloid 1-42 (Aβ), as measured by novel object recognition, Morris water maze, tail-suspension and forced-swimming tests. In addition, phorbol 12-myristate 13-acetate (PMA), a PKC activator which also activates p38MAPK, significantly abolished the effects of SB203580. Moreover, Aβ causes increased phosphorylation of p38MAPK and decreased phosphorylation of Ser9-glycogen synthase kinase 3β (GSK3β) and cAMP-response element binding protein (CREB) in the hippocampus of mice, which could be significantly reversed by SB203580. Our results suggest that SB203580 reversed Aβ-induced cognitive impairments and depression-like behavior via inhibiting p38MAPK signaling pathway, which not only supports p38MAPK as a therapeutic target for AD-associated cognitive dysfunction and depression-like behavior, but also provides experimental basis for the use of SB203580 in co-morbidity of AD and depression.
Previous studies have suggested that increased opioid receptor κ1 (OPRK1) and opioid receptor δ1 (OPRD1) methylation levels are involved in Alzheimer's disease (AD). In the present study, the methylation levels of two opioid receptor genes, opioid receptor µ1 (OPRM1) and opioid related nociceptin receptor 1 (OPRL1), were analyzed for their association with AD. Gene methylation levels were measured using bisulfite pyrosequencing in DNA samples derived from blood samples of 51 AD patients and 63 controls. The results indicated that there were significantly elevated promoter methylation levels of OPRM1 and OPRL1 in AD (OPRM1: P=0.007; OPRL1: P=2.987×10−6). Dual-luciferase reporter gene assays demonstrated that the promoter fragments of these two genes were able to promote gene expression (OPRM1: Fold-change=2.616, P=0.003; OPRL1: Fold change=11.395, P=0.007). In addition, receiver operating characteristic analyses further indicated that a methylation panel of four opioid receptor genes (area under the curve=0.848, sensitivity=0.723, and specificity=0.879) performed well in the prediction of AD. These results suggested that opioid receptor genes may be used as potential methylation biomarkers for the diagnosis of AD.
Aberrant promoter methylation of multiple genes is associated with various diseases, including Alzheimer's disease (AD). The goal of the present study was to determine whether dopamine receptor D4 (DRD4) promoter methylation is associated with AD. In the current study, the methylation levels of the DRD4 promoter were measured in 46 AD patients and 61 controls using bisulfite pyrosequencing technology. The results of the present study demonstrated that DRD4 promoter methylation was significantly higher in AD patients than in controls. A further breakdown analysis by gender revealed that there was a significant association of DRD4 promoter methylation with AD in males (23 patients and 45 controls). In conclusion, the results of the present study demonstrated that elevated DRD4 promoter methylation was associated with AD risk in males.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.