Facilitated by microelectromechanical systems (MEMS) technology, MEMS speakers or microspeakers have been rapidly developed during the past decade to meet the requirements of the flourishing audio market. With advantages of a small footprint, low cost, and easy assembly, MEMS speakers are drawing extensive attention for potential applications in hearing instruments, portable electronics, and the Internet of Things (IoT). MEMS speakers based on different transduction mechanisms, including piezoelectric, electrodynamic, electrostatic, and thermoacoustic actuation, have been developed and significant progresses have been made in commercialization in the last few years. In this article, the principle and modeling of each MEMS speaker type is briefly introduced first. Then, the development of MEMS speakers is reviewed with key specifications of state-of-the-art MEMS speakers summarized. The advantages and challenges of all four types of MEMS speakers are compared and discussed. New approaches to improve sound pressure levels (SPLs) of MEMS speakers are also proposed. Finally, the remaining challenges and outlook of MEMS speakers are given.
Miniaturized ultrasonic transducer arrays with multiple frequencies are key components in endoscopic photoacoustic imaging (PAI) systems to achieve high spatial resolution and large imaging depth for biomedical applications. In this article, we report on the development of ceramic thin-film PZT-based dual- and multi-frequency piezoelectric micromachined ultrasonic transducer (pMUT) arrays and the demonstration of their PAI applications. With chips sized 3.5 mm in length or 10 mm in diameter, square and ring-shaped pMUT arrays incorporating as many as 2520 pMUT elements and multiple frequencies ranging from 1 MHz to 8 MHz were developed for endoscopic PAI applications. Thin ceramic PZT with a thickness of 9 μm was obtained by wafer bonding and chemical mechanical polishing (CMP) techniques and employed as the piezoelectric layer of the pMUT arrays, whose piezoelectric constant d31 was measured to be as high as 140 pm/V. Benefiting from this high piezoelectric constant, the fabricated pMUT arrays exhibited high electromechanical coupling coefficients and large vibration displacements. In addition to electrical, mechanical, and acoustic characterization, PAI experiments with pencil leads embedded into an agar phantom were conducted with the fabricated dual- and multi-frequency pMUT arrays. Photoacoustic signals were successfully detected by pMUT elements with different frequencies and used to reconstruct single and fused photoacoustic images, which clearly demonstrated the advantages of using dual- and multi-frequency pMUT arrays to provide comprehensive photoacoustic images with high spatial resolution and large signal-to-noise ratio simultaneously.
Piezoelectric micromachined ultrasonic transducer (pMUT) rangefinders have been rapidly developed in the last decade. With high output pressure to enable long-range detection and low power consumption (16 μW for over 1 m range detection has been reported), pMUT rangefinders have drawn extensive attention to mobile range-finding. pMUT rangefinders with different strategies to enhance range-finding performance have been developed, including the utilization of pMUT arrays, advanced device structures, and novel piezoelectric materials, and the improvements of range-finding methods. This work briefly introduces the working principle of pMUT rangefinders and then provides an extensive overview of recent advancements that improve the performance of pMUT rangefinders, including advanced pMUT devices and range-finding methods used in pMUT rangefinder systems. Finally, several derivative systems of pMUT rangefinders enabling pMUT rangefinders for broader applications are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.