It is well known that diffusion-induced MR signal loss deviates from monoexponential decay, particularly at high b-values (e.g., >1500 sec/mm 2 for human brain tissues). A number of models have been developed to describe this anomalous diffusion behavior and relate the diffusion measurements to tissue structures. Recently, a new diffusion model was proposed by solving the Bloch-Torrey equation using fractional order calculus with respect to time and space (Magin et al., J Magn Reson 2008;190:255-270; Zhou et al., Proc Int'l Soc Magn Reson Med 2008). Using a spatial Laplacian $ 2b , this model yields a new set of parameters to describe anomalous diffusion: diffusion coefficient D, fractional order derivative in space b, and a spatial parameter m (in units of mm). In this study, we demonstrate that the fractional calculus model can be successfully applied to analyzing diffusion images of healthy human brain tissues in vivo. Five human volunteers were scanned on a commercial 3-T scanner using a customized single-shot echo-planar imaging diffusion sequence with 15 b values ranging from 0 to 4700 sec/mm 2 . The set of images was analyzed using the fractional calculus model, producing spatially resolved maps of D, b, and m. The b and m maps showed notable contrast between white and gray matter. The contrast has been attributed to the varying degree of complexity of the underlying tissue structures and microenvironment. Although the biophysical basis of b and m remains elusive, the potential utility of these parameters to characterize the environment for molecular diffusion, as a complement to apparent diffusion coefficient, may lead to a new way to investigate tissue structural changes in disease progression, intervention, and regression. Magn Reson Med 63:562-569,
A cattle genetic linkage map was constructed which covers more than 95 percent of the bovine genome at medium density. Seven hundred and forty six DNA polymorphisms were genotyped in cattle families which comprise 347 individuals in full sibling pedigrees. Seven hundred and three of the loci are linked to at least one other locus. All linkage groups are assigned to chromosomes, and all are orientated with regards to the centromere. There is little overall difference in the lengths of the bull and cow linkage maps although there are individual differences between maps of chromosomes. One hundred and sixty polymorphisms are in or near genes, and the resultant genome-wide comparative analyses indicate that while there is greater conservation of synteny between cattle and humans compared with mice, the conservation of gene order between cattle and humans is much less than would be expected from the conservation of synteny. This map provides a basis for high-resolution mapping of the bovine genome with physical resources such as Yeast and Bacterial Artificial Chromosomes as well as providing the underpinning for the interpolation of information from the Human Genome Project.
Magnetic resonance imaging (MRI) studies have indicated that the structure deficits and resting-state functional connectivity (FC) imbalances in cortico-limbic circuitry might underline the pathophysiology of MDD. Using structure and functional MRI, our aim is to investigate gray matter abnormalities in patients with treatment-resistant depression (TRD) and treatment-responsive depression (TSD), and test whether the altered gray matter is associated with altered FC. Voxel-based morphometry was used to investigate the regions with gray matter abnormality and FC analysis was further conducted between each gray matter abnormal region and the remaining voxels in the brain. Using one-way analysis of variance, we found significant gray matter abnormalities in the right middle temporal cortex (MTG) and bilateral caudate among the TRD, TSD and healthy controls. For the FC of the right MTG, we found that both the patients with TRD and TSD showed altered connectivity mainly in the default-mode network (DMN). For the FC of the right caudate, both patient groups showed altered connectivity in the frontal regions. Our results revealed the gray matter reduction of right MTG and bilateral caudate, and disrupted functional connection to widely distributed circuitry in DMN and frontal regions, respectively. These results suggest that the abnormal DMN and reward circuit activity might be biomarkers of depression trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.