Flexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high-frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical-free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.85% and reveal near state-of-the-art values for electrical performance, with electron mobility exceeding 2000 cm V s and sheet carrier density above 1.07 × 10 cm . The influence of strain on the RF performance of flexible GaN high-electron-mobility transistor (HEMT) devices is evaluated, demonstrating cutoff frequencies and maximum oscillation frequencies greater than 42 and 74 GHz, respectively, at up to 0.43% strain, representing a significant advancement toward conformal, highly integrated electronic materials for RF applications.
Al-polarity inversion domains formed during AlN layer growth on (0001) sapphire were identified using transmission electron microscopy (TEM). They resemble columnar inversion domains reported for GaN films grown on (0001) sapphire. However, for AlN, these columns have a V-like shape with boundaries that deviate by 2 ± 0.5 o from the c-axis.TEM identification of these defects agrees with the post-growth surface morphology as well as with the microstructure revealed by etching in hot aqueous KOH.
AlN epilayers were grown by metal organic chemical vapor deposition on sapphire substrates. X-ray diffraction measurements revealed that the threading dislocation (TD) density, in particular, the edge TD density, decreases considerably with increasing the epilayer thickness. Photoluminescence results showed that the intensity ratio of the band edge emission to the defect related emission increases linearly with increasing the epilayer thickness. Moreover, the dark current of the fabricated AlN metal-semiconductor-metal deep ultraviolet (DUV) photodetectors decreases drastically with the AlN epilayer thickness. The results suggested that one effective way for attaining DUV optoelectronic devices with improved performance is to increase the thickness of the AlN epilayer template, which results in the reduction of the TD density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.