Ag-based and Cu-based brazing filler metals, which are the most widely used brazing materials in industrial manufacturing, have excellent gap-filling properties and can braze almost all the metallic materials and their alloys, except for the low-melting-point metals such as Al and Mg. Therefore, Ag-based and Cu-based brazing filler metals have attracted great attention. In this review, three series of typical Ag-based filler metals: the Ag-Cu, Ag-Cu-Zn, and Ag-Cu-Zn-Sn alloys; and three series of Cu-based filler metals: the crystalline and amorphous Cu-P filler metals, as well as the Cu-Zn filler metals, were chosen as the representatives. The latest research progress on Sn-containing Ag-based and Cu-based brazing filler metals is summarized, and the influences of Sn on the melting characteristics, wettability, microstructure, and mechanical properties of the selected filler metals are analyzed. Based on these, the problems and corresponding solutions in the investigation and application of the Sn-containing Ag-based and Cu-based filler metals are put forward, and the research and development trends of these filler metals are proposed.
The flame brazing of H62 brass using a novel, low-silver Cu-P brazing filler metal was investigated in this study. The effect of the addition of a trace amount of Sn on the microstructure and properties of Cu-7P-1Ag filler metals was analyzed by means of X-ray diffractometer, scanning electron microscopy and energy dispersive spectrometer. The addition of trace Sn led to a decrease in the solidus and liquidus temperatures of Cu-7P-1Ag filler metals. Meanwhile, the spreading performance of the filler metals on a H62 brass substrate was improved. The microstructure of the low-silver, Cu-P brazing filler metal was mainly composed of α-Ag solid solution, α-Cu solid solution and Cu3P; an increase of Sn content led to the transformation of the microstructure of the joints from a block to a lamellar structure. When the Sn content was 0.5 wt. %, the shear strength of the joint at room temperature reached 348 MPa, and the fracture morphologies changed from a cleavage to a quasi-cleavage structure.
With the rapid development of microelectronics packaging technology, the demand for high-performance packaging materials has further increased. This paper developed novel epoxy-containing Sn-3.0Ag-0.5Cu (SAC305-ER) composite solder pastes, and the effects of epoxy resin on their spreading performance, microstructure, and shear behaviour were analysed. The research results showed that with the addition of epoxy resin, SAC305 solder pastes exhibited exceptional spreadability on Cu substrates, which could be attributed to the reduction in the viscosity and the surface tension of the composite solder pastes. With the addition of epoxy resin, the solder matrix microstructure and interfacial morphology of SAC305-ER composite solder joints remained unchanged. However, continuous resin protective layers were observed on the surface of SAC305-ER composite solder joints after the reflow process. The shear properties of the composite solder joints were enhanced by the extra mechanical bonding effect provided by resin layers. When the epoxy resin content was 8 wt %, the shear forces of SAC305-ER composite solder joints reached the maximum value. Fracture analysis indicated that cracked epoxy resin was observed on the surface of SAC305-ER composite solder joints, indicating that the epoxy resin also underwent obvious deformation in the shear test.
The influence of Ga content on the melting temperature, wettability, microstructure, and mechanical properties of low-silver 12AgCuZnSn-2In-0.15Pr cadmium-free filler metal was investigated systematically by means of differential thermal analysis, X-ray diffractometer, scanning electron microscopy, energy-dispersive spectrometer, etc. The results showed that the addition of the Ga element reduced the solidus and liquidus temperatures of the novel low-silver filler metals, and effectively increased the spreading area of the filler metal on the copper and 304 stainless steel substrates. Furthermore, an appropriate amount of Ga element significantly optimized the interface morphology and improved the mechanical properties of the brazed joints. When the Ga content was 1wt.%, the shear strength of the brazed joints reached a peak value of 448 MPa, and the corresponding fracture morphology showed typical ductile characteristics with obvious dimples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.