In the current investigation, the influence of polyvinyl alcohol (PVA) fibers on flowability and durability of cementitious composite containing fly ash and nano-SiO2 was evaluated. PVA fibers were added into the composite at a volume fraction of 0.3%, 0.6%, 0.9%, and 1.2%. The flowability of the fresh cementitious composite was assessed using slump flow. The durability of cementitious composite includes carbonation resistance, permeability resistance, cracking resistance as well as freezing-thawing resistance, which were evaluated by the depth of carbonation, the water permeability height, cracking resistance ratio of the specimens, and relative dynamic elastic modulus of samples after freeze-thaw cycles, respectively. The results indicated that addition of PVA fibers had a little disadvantageous influence on flowability of cementitious composite, and the flowability of the fresh mixtures decreased with increases in PVA fiber content. Incorporation of PVA fibers significantly improved the durability of cementitious composites regardless of addition of nano-particles. When the fiber content was less than 1.2%, the durability indices of permeability resistance and cracking resistance increased with fiber content. However, the durability indices of carbonation resistance and freezing-thawing resistance began to decrease as the fiber dosage increased from 0.9% to 1.2%. The fiber reinforced cementitious composite exhibited better durability due to addition of nano-SiO2 particles. Nano-SiO2 particle improves microscopic structure of fiber reinforced cementitious composites, and the nano-particles are beneficial for PVA fibers to play the role of reinforcement in cementitious composites.
With the increase in construction scale and difficulty of large and complex bridges in China, it has become increasingly difficult to assess the safety risks of bridges during the construction period. Therefore, how to reasonably assess the safety risk of large, complex bridges during construction has become particularly important. Existing assessment methods are subjective in assigning weights, and it is difficult to select representative important factors to focus on for the prevention and control of numerous risk sources; they do not comprehensively consider the correlation of various risk sources during the construction period. To address the above shortcomings, a safety risk assessment of large and complex bridges during the construction period based on the Delphi-improved fuzzy analytic hierarchy process (FAHP) factor analysis method is proposed in this paper. First, the Delphi method was used to conduct a general survey of safety risk factors during the bridge construction period, and then the work breakdown structure-risk substructure (WBS-RBS) was used to establish the evaluation index system. Second, the improved FAHP was combined with it to calculate the weight of each risk factor. Finally, the factor analysis method was used to determine the correlation degree of each risk factor, and representative factors were selected to express the risk degree of the object to be evaluated to screen out major risk factors in the construction process. Finally, the feasibility and practicality of the method are verified by combining an actual engineering case with AHP (analytic hierarchy process) to perform a comparative study, which provides a reference basis for subsequent bridge construction risk prevention.
Nowadays, many methods have been used in the identification of bridge risk sources, and certain results have been achieved. However, the research on the identification of significant risk sources of bridges during the construction period is relatively weak, and these methods still have some defects, such as the correlation between risk sources is not considered comprehensively, the dynamic risk sources are not fully considered, and the weight assignment is highly subjective. In order to solve these problems, this paper comprehensively uses the combination of expert scoring method, fuzzy analytic hierarchy process (F-AHP), and grey entropy correlation analysis (GECA) to identify significant risk sources during bridge construction. Firstly, the F-AHP and expert scoring method are used to initially identify safety sources during the bridge construction period, which effectively considers the identification of dynamic risk sources. Secondly, the combination of the GRA method and EW method is applied to identify the significant risk sources during bridge construction period, which can effectively analyze the interrelationship between different factors and greatly reduce the interference of subjective factors in the weight assignment, so as to effectively control the risks in construction and protect the health of the bridge structure and property losses. Finally, the feasibility and rationality of the proposed method were verified by comparing the AHP and GECA proposed in this paper in combination with specific engineering examples, which provides a reference basis for the identification of significant risk sources during the follow-up bridge construction period.
In this study, the durability of polyvinyl alcohol fiber-reinforced cementitious composite containing nano-SiO2 was evaluated using the adaptive neuro-fuzzy inference system (ANFIS). According to the structural characteristics of the cementitious composite material and some related standards, the classification criteria for the evaluation indices of cementitious composite materials were clarified, and a corresponding structural framework of durability assessment was constructed. Based on the hypothesis testing principle, the required test data capacity was determined under a certain degree of accuracy, and durability experimental data and expert evaluation results were simulated according to statistical principles to ensure that there were sufficient datasets for ANFIS training. Using an environmental factor submodule as an example, 14 sets of actual test data were used to verify that the ANFIS can quickly and effectively mimic the expert evaluation reasoning process to evaluate the durability of cementitious composites. Compared with other studies related to the durability of cementitious composites, a systematic evaluation system for the durability of concrete was established. We used a polyvinyl alcohol fiber-reinforced cementitious composite containing nano-SiO2 to conduct a comprehensive evaluation of cementitious composites. Compared with the traditional expert evaluation method, the durability evaluation system based on the ANFIS learned expert experience, stored the expert experience in fuzzy rules, and eliminated the subjectivity of expert evaluation, thereby making the evaluation more objective and scientific.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.