This work reports a facile and easily-achieved approach for enzyme immobilization by embedding glucose oxidase (GOx) in magnetic zeolitic imidazolate framework 8 (mZIF-8) via a de novo approach. As a demonstration of the power of such materials, the resulting GOx embedded mZIF-8 (mZIF-8@GOx) was utilized as a colorimetric sensor for rapid detection of glucose. This method was constructed on the basis of metal-organic frameworks (MOFs), which possessed very fascinating peroxidase-like properties, and the cascade reaction for the visual detection of glucose was combined into one step through the mZIF-8@GOx based mimic multi-enzyme system. After characterization by electron microscopy, X-ray diffraction, nitrogen sorption, fourier transform infrared spectroscopy and vibrating sample magnetometry, the as-prepared mZIF-8@GOx was confirmed with the robust core-shell structure, the monodisperse nanoparticle had an average diameter of about 200 nm and displayed superparamagnetism with a saturation magnetization value of 40.5 emu g(-1), it also exhibited a large surface area of 396.10 m(2) g(-1). As a peroxidase mimic, mZIF-8 was verified to be highly stable and of low cost, and showed a strong affinity towards H2O2. Meanwhile, the mZIF-8 embedded GOx also exhibited improved activity, stability and greatly enhanced selectivity in glucose detection. Moreover, the mZIF-8@GOx had excellent recyclability with high activity (88.7% residual activity after 12 times reuse).
In this article, a novel UV-curable epoxy acrylate oligomer (BPEFPGMA) with high refractive index is successfully prepared through semi-esterification reaction of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene and phthalic anhydride, followed by endcaping of glycidyl methacrylate. After 15 times' repetitions, the process and properties of this oligomer are stable and reliable. The resulting BPEFPGMA exhibited low solvent content (1600 ppm), low viscosity (1900-2500 mPa s at 608C), high refractive index (1.587 6 0.003 at 208C), and normal M w (2550-3536 g/mol). The coating formulations of 1.57 UV-curable glue are mixed with BPEFPGMA as reactive oligomer. Through the technology of UV-curing forming, the corresponding brightness enhancement films are obtained. The resulting films exhibit normal structure, excellent adhesion (5B), good scratch resistance (50 g), and good abrasion resistance (50 g). They show excellent performance, and have reached the quality standard for use in liquid crystal display industry.
Earth-abundant iron pyrite (FeS2) shows great potential as a light absorber for solar cells and photodetectors due to their high absorption coefficient (>105 cm-1). In this paper, high-quality phase-pure and single crystalline pyrite nanocrystals were synthesized via facile, low-cost, and environment friendly hydrothermal method. The molar ratio of sulphur to iron and the reaction time play a crucial role in determining the quality and morphology of FeS2 nanocrystals. X-ray diffraction and high-resolution transmission electron microscopy confirm that phase-pure and single crystalline pyrite nanocrystals can be synthesized with high sulphur to iron molar ratio and sufficient reaction time. For the first time, a crystalline nanogap pyrite photodetector with promising photocurrent and UV-visible photoresponse has been fabricated. This work further demonstrates a facile route to synthesize high-quality FeS2 nanomaterials and their potential in optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.