Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.
Background Recent studies indicate important roles for long noncoding RNAs (lncRNAs) in the regulation of gene expression by acting as competing endogenous RNAs (ceRNAs). However, the specific role of lncRNAs in skeletal muscle atrophy is still unclear. Our study aimed to identify the function of lncRNAs that control skeletal muscle myogenesis and atrophy. Methods RNA sequencing was performed to identify the skeletal muscle transcriptome (lncRNA and messenger RNA) between hypertrophic broilers and leaner broilers. To study the ‘sponge’ function of lncRNA, we constructed a lncRNA‐microRNA (miRNA)‐gene interaction network by integrated our previous submitted skeletal muscle miRNA sequencing data. The primary myoblast cells and animal model were used to assess the biological function of the lncIRS1 in vitro or in vivo . Results We constructed a myogenesis‐associated lncRNA‐miRNA‐gene network and identified a novel ceRNA lncRNA named lncIRS1 that is specifically enriched in skeletal muscle. LncIRS1 could regulate myoblast proliferation and differentiation in vitro , and muscle mass and mean muscle fibre in vivo . LncIRS1 increases gradually during myogenic differentiation. Mechanistically, lncIRS1 acts as a ceRNA for miR‐15a, miR‐15b‐5p, and miR‐15c‐5p to regulate IRS1 expression, which is the downstream of the IGF1 receptor. Overexpression of lncIRS1 not only increased the protein abundance of IRS1 but also promoted phosphorylation level of AKT (p‐AKT) a central component of insulin‐like growth factor‐1 pathway. Furthermore, lncIRS1 regulates the expression of atrophy‐related genes and can rescue muscle atrophy. Conclusions The newly identified lncIRS1 acts as a sponge for miR‐15 family to regulate IRS1 expression, resulting in promoting skeletal muscle myogenesis and controlling atrophy.
Chicken growth traits are important economic traits in broilers. A large number of studies are available on finding genetic factors affecting chicken growth. However, most of these studies identified chromosome regions containing putative quantitative trait loci and finding causal mutations is still a challenge. In this genome-wide association study (GWAS), we identified a narrow 1.5 Mb region (173.5–175 Mb) of chicken (Gallus gallus) chromosome (GGA) 1 to be strongly associated with chicken growth using 47,678 SNPs and 489 F2 chickens. The growth traits included aggregate body weight (BW) at 0–90 d of age measured weekly, biweekly average daily gains (ADG) derived from weekly body weight, and breast muscle weight (BMW), leg muscle weight (LMW) and wing weight (WW) at 90 d of age. Five SNPs in the 1.5 Mb KPNA3-FOXO1A region at GGA1 had the highest significant effects for all growth traits in this study, including a SNP at 8.9 Kb upstream of FOXO1A for BW at 22–48 d and 70 d, a SNP at 1.9 Kb downstream of FOXO1A for WW, a SNP at 20.9 Kb downstream of ENSGALG00000022732 for ADG at 29–42 d, a SNP in INTS6 for BW at 90 d, and a SNP in KPNA3 for BMW and LMW. The 1.5 Mb KPNA3-FOXO1A region contained two microRNA genes that could bind to messenger ribonucleic acid (mRNA) of IGF1, FOXO1A and KPNA3. It was further indicated that the 1.5 Mb GGA1 region had the strongest effects on chicken growth during 22–42 d.
The growth and development of skeletal muscle is regulated by proteins as well as non-coding RNAs. Circular RNAs (circRNAs) are universally expressed in various tissues and cell types, and regulate gene expression in eukaryotes. To identify the circRNAs during chicken embryonic skeletal muscle development, leg muscles of female Xinghua (XH) chicken at three developmental time points 11 embryo age (E11), 16 embryo age (E16) and 1 day post hatch (P1) were performed RNA sequencing. We identified 13,377 circRNAs with 3,036 abundantly expressed and most were derived from coding exons. A total of 462 differentially expressed circRNAs were identified (fold change > 2; q-value < 0.05). Parental genes of differentially expressed circRNAs were related to muscle biological processes. There were 946 exonic circRNAs have been found that harbored one or more miRNA-binding site for 150 known miRNAs. We validated that circRBFOX2s promoted cell proliferation through interacted with miR-206. These data collectively indicate that circRNAs are abundant and dynamically expressed during embryonic muscle development and could play key roles through sequestering miRNAs as well as other functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.