We propose a model with two-stage process for abdominal segmentation on CT volumes. First, in order to capture the details of organs, a full convolution-deconvolution network (FCN-DecNet) is constructed with multiple new unpooling, deconvolutional, and fusion layers. Then, we optimize the coarse segmentation results of FCN-DecNet by multiscale weights probabilistic atlas (MS-PA), which uses spatial and intensity characteristic of atlases. Our coarse-fine model takes advantage of intersubject variability, spatial location, and gray information of CT volumes to minimize the error of segmentation. Finally, using our model, we extract liver, spleen, and kidney with Dice index of 90.1 ± 1%, 89.0 ± 1.6%, and 89.0 ± 1.3%, respectively.
Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR) pathological image enhancement method based on improved bias field correction and guided image filter (GIF). Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E) stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR) image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work.
This article has been peer reviewed and published immediately upon acceptance.It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Cardiology Journal" are listed in PubMed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.