Experimental research on circular nano-silica concrete filled stainless steel tube (C-CFSST) stub columns after being exposed to freezing and thawing is carried out in this paper. All of forty specimens were tested in this paper, including nine C-CFSST specimens at normal temperature, 28 short columns of C-CFSST for freeze-thaw treatment and three circular hollow stainless steel stub columns. The failure mode, load-displacement curves, load-strain curves and load-bearing capacity were obtained and analyzed in this paper. The main parameters explored in the test include the number of freeze-thaw cycles (N=0, N=50, N=75, and N=100), wall thickness (T=1.0mm, T=1.2mm, T=1.5mm) andnano-silica concrete strength (fc=20MPa, fc=30MPa, fc=40MPa). The result shows that C-CFSST short columns at normal temperature and subjected to freezing and thawing follow similar failure mode. The effect of freeze-thaw cycles (N) of 50 on bearing capacity of C-CFSST column was maximal, and then the influence of N on the bearing capacity of specimens was small when N reached to 75, finally the effect of N on bearing capacity of C-CFSST column was large when N reached to 100. The bearing capacity of C-CFSST columns increases with increasing wall thickness. In addition, the loss percentage of bearing capacity of specimens (fc=40MPa) for freeze-thaw treatment is maximal, and the loss percentage of bearing capacity of specimens (fc=30MPa) for freeze-thaw treatment is minimal. According to the test results, this paper proposed a formula to calculate the bearing capacity of C-CFSST short columns for freeze-thaw treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.