Non-: alcoholic fatty liver disease (NAFLD) is prevalent worldwide, especially in patients with type 2 diabetes. Liver enzymes are the main warning signs of liver injury and insulin resistance (IR) is critical to NAFLD. This study was aimed to investigate the association between liver enzymes and insulin resistance in type 2 diabetes patients with NAFLD. Data from 212 diabetes patients with NAFLD were analyzed, including 118 males and 94 females who received care from 2014 to 2015. The patients were divided into three groups by severity (mild n=87, moderate n=89, severe n=36). All patients underwent standard clinical and laboratory examinations. Liver enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST), and γ-glutamyl transferase (GGT) were measured, serum fasting glucose and serum fasting insulin were obtained. IR was assessed using the homeostasis model assessment insulin resistance index (HOMA-IR). Age, sex, and BMI did not significantly differ in patients (p>0.05). Compared with normal levels, elevated ALT and AST were associated with a higher HOMA-IR (p=0.0035, p=0.0096, respectively). HOMA-IR did not significantly differ (p>0.05) between patients with normal and elevated GGT. HOMA-IR increased as the levels of liver enzymes increased, and each enzyme showed a significant association with HOMA-IR (p=0.0166, p<0.0001, and p <0.0001). HOMA-IR differs between normal and elevated ALT and AST. Liver enzymes are associated with HOMA-IR in type 2 diabetes patients with NAFLD. These findings can help evaluate the degree of IR and hepatocellular steatosis in patients and prevent the progression of type 2 diabetes and NAFLD in clinical practice.
There are few studies investigate morphologic changes of knee meniscus in vivo mechanical loading and three-dimensions (3D) deformation and displacement of the whole meniscus between in vivo mechanical loading and unloading conditions are still unclear. To investigate the displacements and 3D morphological changes of the menisci under knee weight-bearing and early flexion conditions in healthy adults using a Magnetic Resonance Imaging (MRI)-compatible loading device (a 3.0 T MR imaging system) combined with a newly developed 3D comparison technique. Fifteen healthy volunteers were recruited in this cross-sectional observational study. Each subject underwent MRIs of their dominant right knee in eight different scanning conditions using a 3.0-T MRI scanner with a custom-made MRI-compatible loading device. The knee meniscus images were 3D reconstructed, and dimensional comparisons were made for each meniscal model with baseline (0°-unloaded model). The morphologic changes of the meniscal-anterior horn (AH), body (BD), and posterior horn (PH) regions were expressed as mean positive and negative deviations. The displacements were further investigated, and the meniscal extrusions of different subregions were measured. The morphologic changing patterns of human meniscus under loading and flexions were presented using 3D chromatic maps. The bilateral menisci were generally shifting laterally and posteriorly in most flexion angles and were changing medially and anteriorly under fully extended knee loading conditions. The mean deviations were more significant with loading at 0° of knee flexion, while the PH region in the lateral side changed further posteriorly with loading in 30° flexion. Most of the differences were not significant in other flexion angles between loading conditions. The extrusion of meniscus’s medial body was greater in full extension compared to any other flexing angles. Mechanical loading can significantly deform the menisci in knee extension; however, this effect is limited during knee flexion. Current study can be used as a reference for the evaluations of the integrity in meniscal functions.
Porous microcarriers have aroused increasing attention recently by facilitating oxygen and nutrient transfer, supporting cell attachment and growth with sufficient cell seeding density. In this study, porous polyetheretherketone (PEEK) microcarriers coated with mineralized extracellular matrix (mECM), known for their chemical, mechanical and biological superiority, were developed for orthopedic applications. Porous PEEK microcarriers were derived from smooth microcarriers using a simple wet-chemistry strategy involving the reduction of carbonyl groups. This treatment simultaneously modified surface topology and chemical composition. Furthermore, the microstructure, protein absorption, cytotoxicity and bioactivity of the obtained porous microcarriers were investigated. The deposition of mECM through repeated recellularization and decellularization on the surface of porous MCs further promoted cell proliferation and osteogenic activity. Additionally, the mECM coated porous microcarriers exhibited excellent bone regeneration in a rat calvarial defect repair model in vivo, suggesting huge potential applications in bone tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.