As rapid progress has been achieved in emerging thin film solar cell technology, organic–inorganic hybrid perovskite solar cells (PVSCs) have aroused many concerns with several desired properties for photovoltaic applications, including large absorption coefficients, excellent carrier mobility, long charge carrier diffusion lengths, low‐cost, and unbelievable progress. Power conversion efficiencies increased from 3.8% in 2009 up to the current world record of 22.1%. However, poor long‐term stability of PVSCs limits the future commercial application. Here, the degradation mechanisms for unstable perovskite materials and their corresponding solar cells are discussed. The strategies for enhancing the stability of perovskite materials and PVSCs are also summarized. This review is expected to provide helpful insights for further enhancing the stability of perovskite materials and PVSCs in this exciting field.
The grain size of perovskites was enhanced and the grain boundary was filled with sulfonate carbon nanotubes (s-CNTs) during the CH3NH3PbI3 perovskite precursor solution spin-coating process with the incorporation of s-CNTs. The performance of s-CNT incorporated perovskite solar cells remarkably increased from 10.3% to 15.1% (best) compared with pristine CNT incorporated perovskite solar cells.
Tin‐based perovskite solar cells (PSCs) demonstrate a potential application in wearable electronics due to its hypotoxicity. However, poor crystal quality is still the bottleneck for achieving high‐performance flexible devices. In this work, graphite phase‐C3N4 (g‐C3N4) is applied into tin‐based perovskite as a crystalline template, which delays crystallization via a size‐effect and passivates defects simultaneously. The double hydrogen bond between g‐C3N4 and formamidine cation can optimize lattice matching and passivation. Moreover, the two‐dimensional network structure of g‐C3N4 can fit on the crystals, resulting an enhanced hydrophobicity and oxidation resistance. Therefore, the flexible tin‐based PSCs with g‐C3N4 realize a stabilized power conversion efficiency (PCE) of 8.56 % with negligible hysteresis. In addition, the PSCs can maintain 91 % of the initial PCE after 1000 h under N2 environment and keep 92 % of their original PCE after 600 cycles at a curvature radius of 3 mm.
Fullerene end-capped polyethylene glycol (C60-PEG) was introduced via an antisolvent method to fabricate the perovskite films. C60-PEG could enlarge the perovskite crystal size and passivate the defects of perovskite films, facilitating the carrier transport and hindering the carrier recombination. In consequence, the superior optoelectronic properties were attained with an improved power conversion efficiency of 17.71% for the perovskite device with C60-PEG treatment. Meanwhile, amphiphilic C60-PEG enhanced the resistance of perovskite films to moisture. After 40 days, the C60-PEG-based devices without encapsulation remained 93 and 86% of the original power conversion efficiency value under nitrogen and ambient conditions (25 °C temperature, 60% humidity), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.