In synchrotron facilities, optics with multilayer coatings are used for beam monochromatization, focusing, and collimation. These coatings might be damaged by high heat load, poor film adhesion, high internal stress, or poor vacuum. Optical substrates always need high quality, which is expensive and has a long processing cycle. Therefore, it is desired to make the substrate reusable and the refurbished coating as good as a brand-new one. In this study, a W/B4C multilayer coating with a 2 nm Cr buffer layer was prepared on a Si substrate. The coating was successfully stripped from the Si substrate by dissolving the Cr buffer layer using an etchant. The roughness and morphology after the different etching times were investigated by measuring the GIXRR and 3D surface profiler. It is shown that the time required to etch the W/B4C multilayer coating with a Cr buffer layer, is quite different compared with etching a single Cr film. A layer of silicon dioxide was introduced during the fitting. After the new etching process, the roughness of the sample is as good as the one on a brand-new substrate. The W/B4C multilayer coatings with a Cr buffer layer were recoated on the etched samples, and the interface roughness was not damaged by the etching process.
Lateral graded multilayer can realize reflection, collimation and focusing of hard X-ray, and are currently the research frontier and hotspot of synchrotron radiation and high-performance X-ray sources. To reduce the d-spacing error of graded multilayers, a root mean square error optimization method based on double genetic algorithm (DGA-RMSE) is proposed. The theoretical d-spacing distribution is obtained by optical design, and the range is 1.9 ∼ 3.1 nm. The optimized d-spacing distribution is obtained by convolution of particle beam function and continuous monotonic rate distribution line (RDL) which is constructed in the form of a polynomial. The GA is applied to optimize variables from the polynomial twice, and the RMSE of thickness error is optimized and converged to 0.0065 nm. The final thickness error which is measured by the grazing incidence X-ray reflectivity (GIXRR) is consistent with the theoretical calculation. The results show that DGA-RMSE can precisely select polynomial function of RDL, reducing the error in high-precision magnetron sputtering and mask technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.