CRISPR/Cas9 has been widely used in generating site-specific genetically modified animal models. Myostatin (MSTN) is a negative regulator of muscle mass, related to muscle growth and differentiation. The knockout of MSTN with the desired phenotype of double muscle has been successfully generated in mice, goats, pigs and cattle, but not in rabbits. In this study, the MSTN knockout (KO) rabbits were generated by co-injection of Cas9 mRNA and sgRNA into zygotes. The typical phenotype of double muscle with hyperplasia or hypertrophy of muscle fiber was observed in MSTN KO rabbits. Furthermore, a similar phenotype was found in the F1 generation, suggesting that the mutation of MSTN could be stably inherited in the MSTN KO rabbits. In summary, we have successfully generated MSTN KO rabbits using CRISPR/Cas9 system with high efficiency, which is a reliable and effective animal model for the study of muscle development and related diseases.
The CRISPR RNA-guided Cas9 nuclease gene-targeting system has been extensively used to edit the genome of several organisms. However, most mutations reported to date have been are indels, resulting in multiple mutations and numerous alleles in targeted genes. In the present study, a large deletion of 105 kb in the TYR (tyrosinase) gene was generated in rabbit via a dual sgRNA-directed CRISPR/Cas9 system. The typical symptoms of albinism accompanied significantly decreased expression of TYR in the TYR knockout rabbits. Furthermore, the same genotype and albinism phenotype were found in the F1 generation, suggesting that large-fragment deletions can be efficiently transmitted to the germline and stably inherited in offspring. Taken together, our data demonstrate that mono and biallelic large deletions can be achieved using the dual sgRNA-directed CRISPR/Cas9 system. This system produces no mosaic mutations or off-target effects, making it an efficient tool for large-fragment deletions in rabbit and other organisms.
Cataracts are the leading cause of vision loss in the world, although surgical treatment can restore vision in cataract patients. Until now, there have been no adequate animal models for in vivo studies of artificial lens safety and drug interactions. Genetic studies have demonstrated that GJA8 is involved in maintaining lens opacity and proper lens development. In this study, a cataract model with GJA8 gene knockout was developed via co-injection of Cas9/sgRNA mRNA into rabbit zygotes. Our results showed that gene mutation efficiency in the GJA8 locus reached 98.7% in embryos and 100% in pups, demonstrating that the Cas9/sgRNA system is a highly efficient tool for gene editing in rabbits. In agreement with other studies, our genetic and histology results showed that impaired GJA8 function caused microphthalmia, small lens size and cataracts. In summary, our novel rabbit model of cataracts will be an important drug-screening tool for cataract prevention and treatment.
XIST is a long non-coding RNA, which expressed exclusively from the inactive X chromosome. Although it has been revealed that the A-repeat contributes to the X chromosome inactivation (X-inactivation), the role of the longest D-repeat has not yet been investigated. Here, a sgRNA directed CRISPR/Cas9 system which have multiple target sites within repeat D of XIST, were used to generate D-repeat deletion and studied its roles on X-inactivation. The results showed that the deletion of D-repeat caused a significantly decreased expression of XIST, and up regulated expression of X-linked genes, suggesting that the D-repeat may play an important role in the regulation of XIST expression and silencing of the X-linked genes, which could provide a new idea in the molecular mechanisms of X-inactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.