In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.
In this paper, a cladding-pumped erbium-ytterbium co-doped random fiber laser (EYRFL) operating at 1550 nm with high power laser diode (LD) is proposed and experimentally demonstrated for the first time. The laser cavity includes a 5-m-long erbium-ytterbium co-doped fiber that serves as the gain medium, as well as a 2-km-long single-mode fiber (SMF) to provide random distributed feedback. As a result, stable 2.14 W of 1550 nm random lasing at 9.80 W of 976 nm LD pump power and a linear output with the slope efficiency as 22.7 % are generated. This simple and novel random fiber laser could provide a promising way to develop high power 1.5 μm light sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.