This paper proposes a new dynamic multi-objective optimization algorithm by integrating a new fitting-based prediction (FBP) mechanism with regularity model-based multi-objective estimation of distribution algorithm (RM-MEDA) for multi-objective optimization in changing environments. The prediction-based reaction mechanism aims to generate high-quality population when changes occur, which includes three subpopulations for tracking the moving Pareto-optimal set effectively. The first subpopulation is created by a simple linear prediction model with two different stepsizes. The second subpopulation consists of some new sampling individuals generated by the fitting-based prediction strategy. The third subpopulation is created by employing a recent sampling strategy, generating some effective search individuals for improving population convergence and diversity. Experimental results on a set of benchmark functions with a variety of different dynamic characteristics and difficulties illustrate that the proposed algorithm has competitive effectiveness compared with some state-of-the-art algorithms.
This study proposes a novel and lightweight bio-inspired computation technique named biological survival optimizer (BSO), which simulates the escape behavior of prey in the natural environment. This algorithm consists of two important courses, escape phase and adjustment phase. Specifically, in the escape phase, each search agent is required to updates its location using the best, the worst and a neighboring individual of the population. The adjustment phase is implemented using the simplex algorithm for search better location of the worst agent within a small region. The effectiveness of the BSO is validated on the CEC2017 benchmark problems and three classical engineering structural problems. Simulation comparison results considering both convergence and accuracy simultaneously show that BSO can present competitive performance compared with other state-of-art optimization techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.