A novel NIR-II theranostic nanoprobe, PSY (∼110 nm), was concisely developed, which demonstrated excellent photostability, high tumor uptake, superior S/N ratios and more efficient cancer treatment with minimal side effects than cisplatin.
Endogenous nitric oxide (NO) is an important messenger molecule, which can directly activate K+ transmission and cause relaxation of vascular smooth muscle. Here, inspired by the K+ channel of smooth muscle cells, we report, a novel NO-regulated artificial nanochannel based on a spiro ring opening−closing reaction strategy. This nanofluidic diode system shows an outstanding NO selective response owing to the specific reaction between o-phenylenediamine (OPD) and NO on the channel surface with high ion rectification ratio (~6.7) and ion gating ratio (~4). Moreover, this NO gating system exhibits excellent reversibility and stability as well as high selectivity response. This system not only helps us understand the process of NO directly regulating biological ion channels, but also has potential application value in the field of biosensors.
Carbon
monoxide (CO), an important gas signaling molecule, demonstrated
various physiological and pathological functions by regulating the
ion flux of biological channels. Herein, inspired by the CO-regulated
K+ channel in vivo, we propose a smart CO-responsive nanosensor
through the redox reaction strategy. Such nanosensor demonstrated
an outstanding CO specificity and selectivity with high ion rectification
(∼9) as well as excellent stability and recyclability. Therefore,
these results will provide a new direction for the design of nanochannel-based
sensors for future practical and biological applications.
A coumarin based and viscosity responsive fluorescent probe (HZAU800) was designed and synthesized. The probe, containing a strong electron-donating and rigid group on 7-position of coumarin, and a rhodamine derivative...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.