PURPOSE. Biomechanical properties changes and a-smooth muscle actin (a-SMA) overexpression are involved in myopia scleral remodeling. However, interactions between altered tissue biomechanics and cellular signaling that sustain scleral remodeling have not been well defined. We determine the mechanisms of mechanotransduction in the regulation of a-SMA expression during myopia scleral remodeling.METHODS. Guinea pigs were used to establish a form-deprivation myopia (FDM) model. Protein profiles in myopic sclera were examined using tandem mass spectrometry. Ras homolog gene family member A (RhoA) and a-SMA expressions were confirmed using quantitative (q) RT-PCR and Western blotting. Scleral fibroblasts were cultured and subjected to 4% cyclic strain. Levels of RhoA, rho-associated protein kinase-2 (ROCK2), myocardin-related transcription factor-A (MRTF-A), serum response factor (SRF), and a-SMA were determined by qRT-PCR and Western blotting in groups with or without the RhoA siRNA or ROCK inhibitor Y27632. MRTF-A and a-SMA were evaluated by confocal immunofluorescent microscopy and myofibroblasts were enumerated using flow cytometry.RESULTS. mRNA and protein levels of RhoA and a-SMA were significantly increased in the FDM eyes after 4 weeks of form-deprivation treatment. The 4% static strain increased expressions of RhoA, ROCK2, MRTF-A, SRF, and a-SMA as well as nuclear translocalization of MRTF-A in scleral fibroblasts compared to those without strain stimulation. Additionally, the percentage of myofibroblasts increased after strain stimulation. Conversely, inhibition of RhoA or ROCK2 reversed the strain-induced a-SMA expression and myofibroblast ratio.CONCLUSIONS. Mechanical strain activated RhoA signaling and scleral myofibroblast differentiation. Strain also mediated myofibroblast differentiation via the RhoA/ROCK2-MRTF-A/SRF pathway. These findings provided evidence for a mechanical strain-induced RhoA/ROCK2 pathway that may contribute to myopia scleral remodeling.
Purpose To investigate the interaction between corneal, internal, and total wavefront aberrations (WAs) and their influential factors during orthokeratology (OK) treatment in Chinese adolescents. Methods Thirty teenagers (n = 30 eyes) were enrolled in the study; spherical equivalent refraction (SE), corneal curvature radius (CCR), central corneal thickness (CCT), WAs, and the difference in limbal transverse diameter and OK lens diameter (ΔLLD) were detected before and after one-month OK treatment. Every component of WAs was measured simultaneously by iTrace aberrometer. The influential factors of OK-induced WAs were analyzed. Results SE and CCT decreased while CCR increased significantly (P < 0.01). Higher-order aberrations (HOAs), Spherical aberrations (SAs), and coma increased significantly (P < 0.01). Corneal horizontal coma (Z31-C) and corneal spherical aberrations (Z40-C) increased (P < 0.01). The HOAs, coma, SAs, Z31-C, Z31-T, Z40-C, and Z40-T were positively correlated with SE and CCR (P < 0.01). Z3−1-C showed negative correlations with (ΔLLD) and positive correlations with SE (P < 0.05). Conclusions The increase in OK-induced HOAs is mainly attributed to Z31 and Z40 of cornea. Z3−1 in the internal component showed a compensative effect on the corneal vertical coma. The degree of myopic correction and increase in CCR may be the essential influential factors of the increase in Z31 and Z40. The appropriate size of the OK lens may be helpful to decrease OK-induced vertical coma.
Background. To investigate Wnt/β-catenin signaling pathway expression and its regulation of type I collagen by TGF-β1 in scleral fibroblasts from form-deprivation myopia (FDM) guinea pig model. Methods. Wnt isoforms were examined using genome microarrays. Scleral fibroblasts from FDM group and self-control (SC) group were cultured. Wnt isoforms, β-catenin, TGF-β1, and type I collagen expression levels were examined in the two groups with or without DKK-1 or TGF-β1 neutralizing antibody. Results. For genome microarrays, the expression of Wnt3 in FDM group was significantly greater as confirmed in retinal and scleral tissue. The expression of Wnt3 and β-catenin significantly increased in FDM group and decreased significantly with DKK-1. TGF-β1 expression level decreased significantly in FDM group and increased significantly with DKK-1. Along with morphological misalignment inside and outside cells, the amount of type I collagen decreased in FDM group. Furthermore, type I collagen increased and became regular in DKK-1 intervention group, whereas it decreased and rearranged more disorder in TGF-β1 neutralizing antibody intervention group. Conclusions. The activation of Wnt3/β-catenin signaling pathway was demonstrated in primary scleral fibroblasts in FDM. This pathway further reduced the expression of type I collagen by TGF-β1, which ultimately played a role in scleral remodeling during myopia development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.