A number of major inventions in history have been based on bionic imitation. Heuristics, by applying biological systems to the creation of artificial devices and machines, might be one of the most critical processes in scientific innovation. In particular, prototype heuristics propositions that innovation may engage automatic activation of a prototype such as a biological system to form novel associations between a prototype's function and problem-solving. We speculated that the cortical dissociation between the automatic activation and forming novel associations in innovation is critical point to heuristic creativity. In the present study, novel and old scientific innovations (NSI and OSI) were selected as experimental materials in using learning-testing paradigm to explore the neural basis of scientific innovation induced by heuristic prototype. College students were required to resolve NSI problems (to which they did not know the answers) and OSI problems (to which they knew the answers). From two fMRI experiments, our results showed that the subjects could resolve NSI when provided with heuristic prototypes. In Experiment 1, it was found that the lingual gyrus (LG; BA18) might be related to prototype heuristics in college students resolving NSI after learning a relative prototype. In Experiment 2, the LG (BA18) and precuneus (BA31) were significantly activated for NSI compared to OSI when college students learned all prototypes one day before the test. In addition, the mean beta-values of these brain regions of NSI were all correlated with the behavior accuracy of NSI. As our hypothesis indicated, the findings suggested that the LG might be involved in forming novel associations using heuristic information, while the precuneus might be involved in the automatic activation of heuristic prototype during scientific innovation.
Due to its unique pore structure, porous materials have the potential to be used in the fields of acoustic noise reduction and flow drag reduction control. In order to study their effects and mechanism of drag reduction on the flow around a circular cylinder, experiments are conducted in a low-speed wind tunnel with low turbulence intensity. The drag forces acting on a circular cylinder model are measured using wind tunnel balance when porous materials with different permeability are applied within different intersection angles on the trailing-edge and leading edge, and the flow fields are visualized with a particle image velocimetry system with high time resolution. The method of dynamic mode decomposition (DMD) is also used for reduced-order analysis of the vorticity field in the wake of the cylinder. The measured drag forces and wake flow fields are then compared with those of a smooth cylinder, and the results show that porous materials laid on the trailing-edge can reduce drag, when a porous material with 20 pores per inch is laid within 270° on the leeward side, the best effect of the drag reduction ratio of 10.21% is reached. The results of flow visualization indicate that after the porous material is applied, the vortex region in the wake of the cylinder is expanded; both the frequency of vortex shedding and the magnitude of vorticity fluctuation decrease; the Reynolds-shear-stress decreases significantly, and both indicate that vorticity is dissipated earlier. The results of DMD analysis show that porous materials can effectively relax the energy of vortices in different modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.